-
图片输入 (RGB三个色值通道) 900*600 的彩色图片用 (900*600*3)数组表示
-
卷积:基于卷积核(小矩阵)在每层像素矩阵上按步长移动(左上到右下),扫到数与卷积核相对应位置数相乘再求和,全部扫完后得到一个新矩阵。
#步长指卷积核每次移动几个格子,有横向和纵向。
#卷积核里面的每个值就是我们要寻找(训练)的神经元参数(权重)。
-
Padding 操作:卷积后矩阵维度变少,为保持卷积后图像尺寸可在每次卷积之前给原矩阵外面包一层0(也可只在横向或只在纵向补)
-
池化:卷积操作之后提取很多特征信息,相邻区域有相似特征信息,可以相互替代。(保留信息冗余,增加计算难度),池化是在一个小矩阵区域内,取该区域最大值或者平均值来代替该区域。相当于降维操作。
-
Flatten:指将多维矩阵拉开,变成一维向量表示。用于全连接层输入。
-
全连接层:对第n层和n-1层,n-1层的任意一个节点都和第n层的所有节点有连接。
-
Dropout:指在网络的训练过程中,按照一定的概率将网络中的神经元丢弃,防止过拟合
#过拟合:模型在训练集上表现很好却在测试集上变现较差。
-
64个(3*3)卷积核:一个卷积核扫完图片会生成一个新的矩阵,64个就生成64层。