index = temp_edges.index[(temp_edges['From'].isin([from_node])) & (temp_edges['To'].isin([to_node]))] # 获取符合条件的行的索引值
temp_edges.drop(index=index, inplace=True) # 按索引值删除,inpalce=True表示在原始数据上删除,若inplace=False,则返回一个删除之后的dataframe,原数据不会有改动
我的数据格式是From,To,Value,TimeStamp这样的列名,根据数据整理需要,获取其中的(from,to)节点对,获取完之后,在temp_edges里将其所有符合(from,to)的edges删除。要不然数据量太大了,每次都遍历一千多万条边数据,太慢了。