线性代数学习笔记——几何空间

  • 在空间中,起点为A,终点为B的向量通常被记为 A B → \overrightarrow{AB} AB ,也可用希腊字母 α , β , γ , ⋯ \alpha,\beta,\gamma,\cdots α,β,γ,表示向量。
  • 向量 A B → \overrightarrow{AB} AB 长度(模),记为 ∥ A B → ∥ \left\|\overrightarrow{AB}\right\| AB ,类似地,向量 α \alpha α的长度记为 ∥ α ∥ \left\|\alpha\right\| α
  • 长度为零的向量叫做零向量,记为0。长度为1的向量叫做单位向量
  • 若向量 α \alpha α经过平移得到向量 β \beta β,则认为 α \alpha α β \beta β相等的。换言之,向量可以在空间内自由平移,因而也常被称为自由向量

空间向量的线性运算与数量积

 空间向量的线性运算
  • α , β \alpha,\beta α,β为空间内的两个向量,令 A B → = α \overrightarrow{AB} = \alpha AB =α B C → = β \overrightarrow{BC} = \beta BC =β,则称向量 A C → \overrightarrow{AC} AC 为向量 α \alpha α β \beta β,记为 α + β \alpha+\beta α+β,即 α + β = A B → + B C → = A C → \alpha+\beta=\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{AC} α+β=AB +BC =AC 。求两个向量的和的运算叫做向量的加法
  • 向量的加法运算性质:
     交换律: α + β = β + α \alpha+\beta=\beta+\alpha α+β=β+α
     结合律: ( α + β ) + γ = α + ( β + γ ) (\alpha+\beta)+\gamma=\alpha+(\beta+\gamma) (α+β)+γ=α+(β+γ)
    α + 0 = α \alpha+0=\alpha α+0=α
    α + ( − α ) = 0 \alpha+(-\alpha)=0 α+(α)=0
    其中 α , β , γ \alpha,\beta,\gamma α,β,γ为任意向量
  • 一个实数 k k k与一个向量 α \alpha α是一个向量,记为 k α k\alpha kα,其长度 ∥ k α ∥ = ∣ k ∣ ⋅ ∥ α ∥ \left\| k \alpha \right\|=|k| \cdot \left\| \alpha \right\| kα=kα。若 ∥ k α ∥ ≠ 0 \left\| k \alpha\right\| \ne 0 kα=0,则当 k > 0 k > 0 k>0时, k α k\alpha kα α \alpha α同方向;当 k < 0 k<0 k<0时, k α k\alpha kα α \alpha α反方向。求一个实数与一个向量的积的运算叫做向量的数乘
  • 向量的数乘运算性质:
    1 α = α 1\alpha=\alpha 1α=α
    ( k l ) α = k ( l α ) (kl)\alpha=k(l\alpha) (kl)α=k(lα)
    ( k + l ) α = k α + l α (k+l)\alpha=k\alpha+l\alpha (k+l)α=kα+lα
    k ( α + β ) = k α + k β k(\alpha+\beta)=k\alpha+k\beta k(α+β)=kα+kβ
    其中 k , l k,l k,l为任意实数, α , β \alpha,\beta α,β为任意向量。
  • 向量的加法和数乘统称为向量的线性运算
  • α 1 , α 2 , ⋯   , α s \alpha_1,\alpha_2,\cdots,\alpha_s α1,α2,,αs为一组向量, k 1 , k 2 , ⋯   , k s k_1,k_2,\cdots,k_s k1,k2,,ks为一组实数,则称
    k 1 α 1 + k 2 α 2 + ⋯ + k s α s k_1\alpha_1+k_2\alpha_2+\cdots+k_s\alpha_s k1α1+k2α2++ksαs α 1 , α 2 , ⋯   , α s \alpha_1,\alpha_2,\cdots,\alpha_s α1,α2,,αs的一个线性组合,其中 k 1 , k 2 , ⋯   , k s k_1,k_2,\cdots,k_s k1,k2,,ks称为组合系数
  • α 1 , α 2 , ⋯   , α s , β \alpha_1,\alpha_2,\cdots,\alpha_s,\beta α1,α2,,αs,β为一组向量,若存在一组实数 k 1 , k 2 , ⋯   , k s k_1,k_2,\cdots,k_s k1,k2,,ks使
    β = k 1 α 1 + k 2 α 2 + ⋯ + k s α s , \beta = k_1\alpha_1+k_2\alpha_2+\cdots+k_s\alpha_s, β=k1α1+k2α2++ksαs,则称 β \beta β能由 α 1 , α 2 , ⋯   , α s \alpha_1,\alpha_2,\cdots,\alpha_s α1,α2,,αs线性表示
  • 若存在一组不全为零的实数 k 1 , k 2 , ⋯   , k s k_1,k_2,\cdots,k_s k1,k2,,ks使
    k 1 α 1 + k 2 α 2 + ⋯ + k s α s = 0 , k_1\alpha_1+k_2\alpha_2+\cdots+k_s\alpha_s=0, k1α1+k2α2++ksαs=0,则称 α 1 , α 2 , ⋯   , α s \alpha_1,\alpha_2,\cdots,\alpha_s α1,α2,,αs线性相关;否则称 α 1 , α 2 , ⋯   , α s \alpha_1,\alpha_2,\cdots,\alpha_s α1,α2,,αs线性无关
  • α \alpha α为非零向量,则向量 β \beta β α \alpha α共线的充分必要条件是 β \beta β能由 α \alpha α线性表示,这时,表示方式是唯一的。
  • 设向量 α \alpha α β \beta β不共线,则向量 γ \gamma γ α , β \alpha,\beta α,β共面的充分必要条件是 γ \gamma γ能由 α , β \alpha,\beta α,β线性表示,这时,表示方式是唯一的。
 空间向量的数量积
  • 空间内的两个向量 α , β \alpha,\beta α,β数量积为一个实数,记为 α ⋅ β \alpha\cdot\beta αβ。当 α \alpha α β \beta β都不为零向量且夹角为 φ \varphi φ时, α ⋅ β = ∥ α ∥ ⋅ ∥ β ∥ ⋅ c o s φ \alpha\cdot\beta=\left\| \alpha \right\| \cdot \left\| \beta \right\| \cdot cos \varphi αβ=αβcosφ;当 α \alpha α β \beta β有一个为零向量时, α ⋅ β = 0 \alpha \cdot \beta=0 αβ=0
  • 向量的数量积运算性质:
    α 2 = ∥ α ∥ 2 ≥ 0 , α 2 = 0 \alpha^2= \left\| \alpha \right\|^2 \ge 0,\alpha^2=0 α2=α20,α2=0的充分必要条件是 α = 0 \alpha=0 α=0(其中 α 2 = α ⋅ α \alpha^2=\alpha \cdot \alpha α2=αα)
    α ⋅ β = β ⋅ α \alpha \cdot \beta = \beta \cdot \alpha αβ=βα
    ( k α ) ⋅ β = k ( α ⋅ β ) (k \alpha) \cdot \beta=k(\alpha \cdot \beta) (kα)β=k(αβ)
    ( α + β ) ⋅ γ = α ⋅ γ + β ⋅ γ (\alpha+\beta) \cdot \gamma= \alpha \cdot \gamma+ \beta \cdot \gamma (α+β)γ=αγ+βγ
    其中 α , β , γ \alpha,\beta,\gamma α,β,γ为任意向量, k k k为任意实数

空间坐标系

 仿射坐标系
  • 在空间中任取一点O,以点O为起点任意作3个不共面的向量 α 1 , α 2 , α 3 \alpha_1,\alpha_2,\alpha_3 α1,α2,α3。这就建立了一个放射坐标系,记作 { O ; α 1 , α 2 , α 3 } \{O;\alpha_1,\alpha_2,\alpha_3\} {O;α1,α2,α3}
  • 对于放射坐标系 { O ; α 1 , α 2 , α 3 } \{O;\alpha_1,\alpha_2,\alpha_3\} {O;α1,α2,α3}中的任意向量 α \alpha α,存在唯一的有序数组(a,b,c)使得 α = a α 1 + b α 2 + c α 3 \alpha=a\alpha_1+b\alpha_2+c\alpha_3 α=aα1+bα2+cα3
  • 对于一个放射坐标系 { O ; α 1 , α 2 , α 3 } \{O;\alpha_1,\alpha_2,\alpha_3\} {O;α1,α2,α3},点O称为坐标原点,向量 O P → \overrightarrow{OP} OP 称为点P的向径 α 1 , α 2 , α 3 \alpha_1,\alpha_2,\alpha_3 α1,α2,α3称为坐标向量。过原点且与坐标向量同方向的有向直线称为坐标轴,两个坐标轴所在的平面称为坐标平面。若 O P → = α = a α 1 + b α 2 + c α 3 , \overrightarrow{OP}=\alpha=a\alpha_1+b\alpha_2+c\alpha_3, OP =α=aα1+bα2+cα3,则称有序数组(a,b,c)为 α \alpha α或点P在仿射坐标系 { O ; α 1 , α 2 , α 3 } \{O;\alpha_1,\alpha_2,\alpha_3\} {O;α1,α2,α3}下的坐标
  • 不特别声明,所说的直角坐标系均指右手直角坐标系
 空间向量线性运算的坐标表示
  • 在直角坐标系 { O ; i , j , k } \{O;i,j,k\} {O;i,j,k}中,设 α = a 1 i + a 2 j + a 3 k , β = b 1 i + b 2 j + b 3 k \alpha=a_1i+a_2j+a_3k,\beta=b_1i+b_2j+b_3k α=a1i+a2j+a3k,β=b1i+b2j+b3k,则对于任意实数a,b:
    a α + b β = ( a a 1 + b b 1 , a a 2 + b b 2 , a a 3 + b b 3 ) a\alpha+b\beta=(aa_1+bb_1,aa_2+bb_2,aa_3+bb_3) aα+bβ=(aa1+bb1,aa2+bb2,aa3+bb3)
    a α = ( a a 1 , a a 2 , a a 3 ) a\alpha=(aa_1,aa_2,aa_3) aα=(aa1,aa2,aa3)
  • 定比分点公式:
    P 1 ( x 1 , y 1 , z 1 ) , P 2 ( x 2 , y 2 , z 2 ) P_1(x_1,y_1,z_1),P_2(x_2,y_2,z_2) P1(x1,y1,z1),P2(x2,y2,z2),求点 P P P的坐标 ( x , y , z ) (x,y,z) (x,y,z),使得 P 1 P → = λ P P 2 → \overrightarrow{P_1P}=\lambda \overrightarrow{PP_2} P1P =λPP2 ,其中 λ ≠ − 1 \lambda \ne-1 λ=1
    x = x 1 + λ x 2 1 + λ , y = y 1 + λ y 2 1 + λ , z = z 1 + λ z 2 1 + λ x=\frac{x_1+\lambda x_2}{1+\lambda},y=\frac{y_1+\lambda y_2}{1+\lambda}, z=\frac{z_1+\lambda z_2}{1+\lambda} x=1+λx1+λx2,y=1+λy1+λy2,z=1+λz1+λz2
 空间向量数量积的坐标表示
  • 对于 α = ( a 1 , a 2 , a 3 ) , β = ( b 1 , b 2 , b 3 ) \alpha=(a_1,a_2,a_3),\beta=(b_1,b_2,b_3) α=(a1,a2,a3),β=(b1,b2,b3)
    α ⋅ β = a 1 b 1 + a 2 b 2 + a 3 b 3 \alpha \cdot \beta=a_1b_1+a_2b_2+a_3b_3 αβ=a1b1+a2b2+a3b3

空间向量的向量积和混合积

 空间向量的向量积
  • 两个向量 α \alpha α β \beta β向量积是一个向量,记为 α × β \alpha \times \beta α×β,其长度为
    ∥ α × β ∥ = { ∥ α ∥ ⋅ ∥ β ∥ ⋅ s i n φ , 当 α 与 β 均 非 零 且 夹 角 为 φ 时 , 0 ,                            当 α = 0 或 β = 0 时 . \left\| \alpha \times \beta \right\| = \left\{ \begin{aligned} &\left\|\alpha\right\| \cdot \left\|\beta\right\| \cdot sin \varphi ,当\alpha与\beta均非零且夹角为\varphi时,\\ &0,~~~~~~~~~~~~~~~~~~~~~~~~~~当\alpha=0或\beta=0时. \end{aligned} \right. α×β={αβsinφαβφ,0                          α=0β=0.
    ∥ α × β ∥ ≠ 0 \left\|\alpha \times \beta\right\| \ne 0 α×β=0时, α × β \alpha \times \beta α×β垂直于 α \alpha α β \beta β,且 α , β , α × β \alpha,\beta,\alpha \times \beta α,β,α×β三者的方向符合右手螺旋法则。
  • 向量积又叫外积叉积
  • 向量积性质:
    α × β = − ( β × α ) \alpha \times \beta = -(\beta \times \alpha) α×β=(β×α)
    ( k α ) × β = k ( α × β ) = α × ( k β ) (k \alpha) \times \beta = k(\alpha \times \beta) = \alpha \times (k \beta) (kα)×β=k(α×β)=α×(kβ)
    ( α + β ) × γ = α × γ + β × γ , γ × ( α + β ) = γ × α + γ × β (\alpha+\beta)\times\gamma=\alpha\times\gamma+\beta\times\gamma,\gamma\times(\alpha+\beta)=\gamma\times\alpha+\gamma\times\beta (α+β)×γ=α×γ+β×γ,γ×(α+β)=γ×α+γ×β
    其中 α , β , γ \alpha,\beta,\gamma α,β,γ为任意向量, k k k为任意实数。
    α \alpha α β \beta β共线的充分必要条件是 α × β = 0 \alpha \times \beta=0 α×β=0
    α \alpha α β \beta β垂直的充分必要条件是 ∥ α × β ∥ = ∥ α ∥ ⋅ ∥ β ∥ \left\|\alpha\times\beta\right\|=\left\|\alpha\right\| \cdot \left\|\beta\right\| α×β=αβ
 空间向量的混合积
  • 三个向量 α , β , γ \alpha,\beta,\gamma α,β,γ混合积 ( α × β ) ⋅ γ (\alpha\times\beta)\cdot\gamma (α×β)γ,常记为 ( α , β , γ ) (\alpha,\beta,\gamma) (α,β,γ)
  • 轮换对称性:
    ( α × β ) ⋅ γ = ( β × γ ) ⋅ α = ( γ × α ) ⋅ β (\alpha\times\beta)\cdot\gamma=(\beta\times\gamma)\cdot\alpha=(\gamma\times\alpha)\cdot\beta (α×β)γ=(β×γ)α=(γ×α)β
  • 混合积性质:
    ( α , α , β ) = 0 (\alpha,\alpha,\beta)=0 (α,α,β)=0
    ( α , β , γ ) = − ( β , α , γ ) (\alpha,\beta,\gamma)=-(\beta,\alpha,\gamma) (α,β,γ)=(β,α,γ)
    ( α 1 + α 2 , β , γ ) = ( α 1 , β , γ ) + ( α 2 , β , γ ) (\alpha_1+\alpha_2,\beta,\gamma)=(\alpha_1,\beta,\gamma)+(\alpha_2,\beta,\gamma) (α1+α2,β,γ)=(α1,β,γ)+(α2,β,γ)
    ( k α , β , γ ) = k ( α , β , γ ) (k\alpha,\beta,\gamma)=k(\alpha,\beta,\gamma) (kα,β,γ)=k(α,β,γ)
    ( α , β , γ + k α ) = ( α , β , γ ) (\alpha,\beta,\gamma+k\alpha)=(\alpha,\beta,\gamma) (α,β,γ+kα)=(α,β,γ)
    其中 α , β , γ \alpha,\beta,\gamma α,β,γ为任意向量, k k k为任意实数。
  • 混合积的坐标表示
    α = ( a 1 , a 2 , a 3 ) , β = ( b 1 , b 2 , b 3 ) , γ = ( c 1 , c 2 , c 3 ) \alpha=(a_1,a_2,a_3),\beta=(b_1,b_2,b_3),\gamma=(c_1,c_2,c_3) α=(a1,a2,a3),β=(b1,b2,b3),γ=(c1,c2,c3)
    ( α × β ) ⋅ γ = ∣ a 1 a 2 a 3 b 1 b 2 b 3 c 1 c 2 c 3 ∣ (\alpha\times\beta)\cdot\gamma= \left| \begin{matrix} a_1 &a_2 &a_3 \\ b_1 &b_2 &b_3 \\ c_1 &c_2 &c_3 \end{matrix} \right| (α×β)γ=a1b1c1a2b2c2a3b3c3

平面和直线

 平面的方程

平面 π \pi π过点 P 0 ( x 0 , y 0 , z 0 ) P_0(x_0,y_0,z_0) P0(x0,y0,z0),法向量 n = ( A , B , C ) n=(A,B,C) n=(A,B,C)

  • 点法式方程:
    A ( x − x 0 ) + B ( y − y 0 ) + C ( z − z 0 ) = 0 A(x-x_0)+B(y-y_0)+C(z-z_0)=0 A(xx0)+B(yy0)+C(zz0)=0
  • 一般方程:
    A x + B y + C z + D = 0 Ax+By+Cz+D=0 Ax+By+Cz+D=0
  • 三点式方程:
    设平面 π \pi π过三个不共线的点 P 1 ( x 1 , y 1 , z 1 ) , P 2 ( x 2 , y 2 , z 2 ) , P 3 ( x 3 , y 3 , z 3 ) P_1(x_1,y_1,z_1),P_2(x_2,y_2,z_2),P_3(x_3,y_3,z_3) P1(x1,y1,z1),P2(x2,y2,z2),P3(x3,y3,z3)
    ∣ x − x 1 y − y 1 z − z 1 x 2 − x 1 y 2 − y 1 z 2 − z 1 x 3 − x 1 y 3 − y 1 z 3 − z 1 ∣ = 0 \left| \begin{matrix} x-x_1 &y-y_1 &z-z_1 \\ x_2-x_1 &y_2-y_1 &z_2-z_1 \\ x_3-x_1 &y_3-y_1 &z_3-z_1 \end{matrix} \right| =0 xx1x2x1x3x1yy1y2y1y3y1zz1z2z1z3z1=0
  • 截距式方程:
    x a + y b + z c = 1 \frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1 ax+by+cz=1
 直线的方程

直线L过点 P 0 ( x 0 , y 0 , z 0 ) P_0(x_0,y_0,z_0) P0(x0,y0,z0),且平行于向量 s = ( l , m , n ) s=(l,m,n) s=(l,m,n)

  • 参数方程:
    { x = x 0 + l t , y = y 0 + m t ,        − ∞ < t < + ∞ z = z 0 + n t , \left\{ \begin{aligned} &x=x_0+lt, \\ &y=y_0+mt, ~~~~~~-\infty <t<+\infty\\ &z=z_0+nt, \end{aligned} \right. x=x0+lt,y=y0+mt,      <t<+z=z0+nt,
  • 对称方程(标准方程):
    x − x 0 l = y − y 0 m = z − z 0 n \frac{x-x_0}{l}=\frac{y-y_0}{m}=\frac{z-z_0}{n} lxx0=myy0=nzz0
  • 一般方程:
    两平面 A 1 x + B 1 y + C 1 z + D 1 = 0 A_1x+B_1y+C_1z+D_1=0 A1x+B1y+C1z+D1=0 A 2 x + B 2 y + C 2 z + D 2 = 0 A_2x+B_2y+C_2z+D_2=0 A2x+B2y+C2z+D2=0相较于直线L
    { A 1 x + B 1 y + C 1 z + D 1 = 0 , A 2 x + B 2 y + C 2 z + D 2 = 0 \left\{ \begin{aligned} &A_1x+B_1y+C_1z+D_1=0,\\ &A_2x+B_2y+C_2z+D_2=0 \end{aligned} \right. {A1x+B1y+C1z+D1=0,A2x+B2y+C2z+D2=0
 点、直线以及平面的位置关系
 夹角
  • 两直线之间的夹角
    假如两直线L1和L2的方向向量分别为 s 1 s_1 s1 s 2 s_2 s2
    θ = a r c c o s ∣ s 1 ⋅ s 2 ∣ ∥ s 1 ∥ ⋅ ∥ s 2 ∥ \theta=arccos\frac{|s_1 \cdot s_2|}{\left\|s_1\right\|\cdot\left\|s_2\right\|} θ=arccoss1s2s1s2
  • 直线与平面的夹角
    假如直线L的方向向量为 s s s,平面 π \pi π的法向量 n n n
    θ = a r c s i n ∣ s ⋅ n ∣ ∥ s ∥ ⋅ ∥ n ∥ \theta=arcsin\frac{|s\cdot n|}{\left\|s\right\|\cdot\left\|n\right\|} θ=arcsinsnsn
  • 两平面之间的夹角
    假如两平面 π 1 , π 2 \pi_1,\pi_2 π1,π2的法向量分别为 n 1 n_1 n1 n 2 n_2 n2
    θ = a r c c o s ∣ n 1 ⋅ n 2 ∣ ∥ n 1 ∥ ⋅ ∥ n 2 ∥ \theta=arccos\frac{|n_1 \cdot n_2|}{\left\|n_1\right\|\cdot\left\|n_2\right\|} θ=arccosn1n2n1n2
 距离
  • 点到直线的距离
    设直线L过P0,方向向量为 s s s,点P到直线L的距离d
    d = ∥ P 0 P → × s ∥ ∥ s ∥ . d=\frac{\| \overrightarrow{P_0P} \times s \|}{\|s\|}. d=sP0P ×s.
  • 点到平面的距离
    设平面 π \pi π过点P0,法向量为 n n n,点P到平面 π \pi π的距离d
    d = ∣ P 0 P → ⋅ n ∣ ∥ n ∥ . d=\frac{|\overrightarrow{P_0P} \cdot n|}{\|n\|}. d=nP0P n.
    如果平面 π \pi π的方程为 A x + B y + C z + D = 0 Ax+By+Cz+D=0 Ax+By+Cz+D=0,点P0,P的坐标分别为(x0,y0,z0)和(x1,y1,z1)
    d = ∣ A x 1 + B y 1 + C z 1 + D ∣ A 2 + B 2 + C 2 . d=\frac{|Ax_1+By_1+Cz_1+D|}{\sqrt{A^2+B^2+C^2}}. d=A2+B2+C2 Ax1+By1+Cz1+D.
  • 异面直线之间的距离
    L1,L2为两条异面直线,在这两条直线上各取一点,分别记为P1,P2,设起点在P1的向量 s 1 , s 2 s_1,s_2 s1,s2分别为直线L1,L2的方向向量。
    d = ∣ ( s 1 , s 2 , P 1 P 2 → ) ∣ ∥ s 1 × s 2 ∥ . d=\frac{|(s_1,s_2,\overrightarrow{P_1P_2})|}{\|s_1 \times s_2\|}. d=s1×s2(s1,s2,P1P2 ).
 平面束
  • 过一条直线的全体平面称为一个平面束

空间直角坐标变换

 向量在不同的直角坐标系下的坐标
  • { O ; i , j , k } \{O;i,j,k\} {O;i,j,k} { O ′ ; u , v , w } \{O';u,v,w\} {O;u,v,w}是空间内的两个直角坐标系,向量 α \alpha α在这两个坐标系下的坐标分别为(a,b,c)和(a’,b’,c’),即
    α = a i + b j + c k , α = a ′ u + b ′ v + c ′ w . \alpha=ai+bj+ck,\alpha=a'u+b'v+c'w. α=ai+bj+ckα=au+bv+cw.
    为了得到(a,b,c)和(a’,b’,c’)的联系,设
    u = a 11 i + a 21 j + a 31 k , v = a 12 i + a 22 j + a 32 k , w = a 13 i + a 23 j + a 33 k . u=a_{11}i+a_{21}j+a_{31}k,\\ v=a_{12}i+a_{22}j+a_{32}k,\\ w=a_{13}i+a_{23}j+a_{33}k. u=a11i+a21j+a31k,v=a12i+a22j+a32k,w=a13i+a23j+a33k.
    可得:
    ( a , b , c ) = ( a ′ , b ′ , c ′ ) A T (a,b,c)=(a',b',c')A^T (a,b,c)=(a,b,c)AT
    其中
    A = ( a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ) A= \left( \begin{matrix} a_{11} &a_{12} &a_{13} \\ a_{21} &a_{22} &a_{23} \\ a_{31} &a_{32} &a_{33} \end{matrix} \right) A=a11a21a31a12a22a32a13a23a33
    叫做从基 i , j , k i,j,k i,j,k u , v , w u,v,w u,v,w过渡矩阵
  • A T A = A A T = E 3 A^TA = AA^T=E_3 ATA=AAT=E3,即 A − 1 = A T A^{-1}=A^T A1=AT
 点在不同的直角坐标系下的坐标
  • 设点P在上述两个坐标系下的坐标分别为 ( x , y , z ) (x,y,z) (x,y,z) ( x ′ , y ′ , z ′ ) (x',y',z') (x,y,z),即
    O P → = x i + y j + z k , O ′ P → = x ′ u + y ′ v + z ′ w . \overrightarrow{OP}=xi+yj+zk,\overrightarrow{O'P}=x'u+y'v+z'w. OP =xi+yj+zkOP =xu+yv+zw.
    得点P的直角坐标变换公式
    ( x , y , z ) = ( x ′ , y ′ , z ′ ) A T + ( x 0 , y 0 , z 0 ) ( x ′ , y ′ , z ′ ) = ( x − x 0 , y − y 0 , z − z 0 ) A . (x,y,z)=(x',y',z')A^T+(x_0,y_0,z_0)\\ (x',y',z')=(x-x_0,y-y_0,z-z_0)A. (x,y,z)=(x,y,z)AT+(x0,y0,z0)(x,y,z)=(xx0,yy0,zz0)A.
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值