线性代数学习笔记——几何空间

  • 在空间中,起点为A,终点为B的向量通常被记为 A B → \overrightarrow{AB} AB ,也可用希腊字母 α , β , γ , ⋯ \alpha,\beta,\gamma,\cdots α,β,γ,表示向量。
  • 向量 A B → \overrightarrow{AB} AB 长度(模),记为 ∥ A B → ∥ \left\|\overrightarrow{AB}\right\| AB ,类似地,向量 α \alpha α的长度记为 ∥ α ∥ \left\|\alpha\right\| α
  • 长度为零的向量叫做零向量,记为0。长度为1的向量叫做单位向量
  • 若向量 α \alpha α经过平移得到向量 β \beta β,则认为 α \alpha α β \beta β相等的。换言之,向量可以在空间内自由平移,因而也常被称为自由向量

空间向量的线性运算与数量积

 空间向量的线性运算
  • α , β \alpha,\beta α,β为空间内的两个向量,令 A B → = α \overrightarrow{AB} = \alpha AB =α B C → = β \overrightarrow{BC} = \beta BC =β,则称向量 A C → \overrightarrow{AC} AC 为向量 α \alpha α β \beta β,记为 α + β \alpha+\beta α+β,即 α + β = A B → + B C → = A C → \alpha+\beta=\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{AC} α+β=AB +BC =AC 。求两个向量的和的运算叫做向量的加法
  • 向量的加法运算性质:
     交换律: α + β = β + α \alpha+\beta=\beta+\alpha α+β=β+α
     结合律: ( α + β ) + γ = α + ( β + γ ) (\alpha+\beta)+\gamma=\alpha+(\beta+\gamma) (α+β)+γ=α+(β+γ)
    α + 0 = α \alpha+0=\alpha α+0=α
    α + ( − α ) = 0 \alpha+(-\alpha)=0 α+(α)=0
    其中 α , β , γ \alpha,\beta,\gamma α,β,γ为任意向量
  • 一个实数 k k k与一个向量 α \alpha α是一个向量,记为 k α k\alpha kα,其长度 ∥ k α ∥ = ∣ k ∣ ⋅ ∥ α ∥ \left\| k \alpha \right\|=|k| \cdot \left\| \alpha \right\| kα=kα。若 ∥ k α ∥ ≠ 0 \left\| k \alpha\right\| \ne 0 kα=0,则当 k > 0 k > 0 k>0时, k α k\alpha kα α \alpha α同方向;当 k < 0 k<0 k<0时, k α k\alpha kα α \alpha α反方向。求一个实数与一个向量的积的运算叫做向量的数乘
  • 向量的数乘运算性质:
    1 α = α 1\alpha=\alpha 1α=α
    ( k l ) α = k ( l α ) (kl)\alpha=k(l\alpha) (kl)α=k(lα)
    ( k + l ) α = k α + l α (k+l)\alpha=k\alpha+l\alpha (k+l)α=kα+lα
    k ( α + β ) = k α + k β k(\alpha+\beta)=k\alpha+k\beta k(α+β)=kα+kβ
    其中 k , l k,l k,l为任意实数, α , β \alpha,\beta α,β为任意向量。
  • 向量的加法和数乘统称为向量的线性运算
  • α 1 , α 2 , ⋯   , α s \alpha_1,\alpha_2,\cdots,\alpha_s α1,α2,,αs为一组向量, k 1 , k 2 , ⋯   , k s k_1,k_2,\cdots,k_s k1,k2,,ks为一组实数,则称
    k 1 α 1 + k 2 α 2 + ⋯ + k s α s k_1\alpha_1+k_2\alpha_2+\cdots+k_s\alpha_s k1α1+k2α2++ksαs α 1 , α 2 , ⋯   , α s \alpha_1,\alpha_2,\cdots,\alpha_s α1,α2,,αs的一个线性组合,其中 k 1 , k 2 , ⋯   , k s k_1,k_2,\cdots,k_s k1,k2,,ks称为组合系数
  • α 1 , α 2 , ⋯   , α s , β \alpha_1,\alpha_2,\cdots,\alpha_s,\beta α1,α2,,αs,β为一组向量,若存在一组实数 k 1 , k 2 , ⋯   , k s k_1,k_2,\cdots,k_s k1,k2,,ks使
    β = k 1 α 1 + k 2 α 2 + ⋯ + k s α s , \beta = k_1\alpha_1+k_2\alpha_2+\cdots+k_s\alpha_s, β=k1α1+k2α2++ksαs,则称 β \beta β能由 α 1 , α 2 , ⋯   , α s \alpha_1,\alpha_2,\cdots,\alpha_s α1,α2,,αs线性表示
  • 若存在一组不全为零的实数 k 1 , k 2 , ⋯   , k s k_1,k_2,\cdots,k_s k1,k2,,ks使
    k 1 α 1 + k 2 α 2 + ⋯ + k s α s = 0 , k_1\alpha_1+k_2\alpha_2+\cdots+k_s\alpha_s=0, k1α1+k2α2++ksαs=0,则称 α 1 , α 2 , ⋯   , α s \alpha_1,\alpha_2,\cdots,\alpha_s α1,α2,,αs线性相关;否则称 α 1 , α 2 , ⋯   , α s \alpha_1,\alpha_2,\cdots,\alpha_s α1,α2,,αs线性无关
  • α \alpha α为非零向量,则向量 β \beta β α \alpha α共线的充分必要条件是 β \beta
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值