- 在空间中,起点为A,终点为B的向量通常被记为 A B → \overrightarrow{AB} AB,也可用希腊字母 α , β , γ , ⋯ \alpha,\beta,\gamma,\cdots α,β,γ,⋯表示向量。
- 向量 A B → \overrightarrow{AB} AB的长度(模),记为 ∥ A B → ∥ \left\|\overrightarrow{AB}\right\| ∥∥∥AB∥∥∥,类似地,向量 α \alpha α的长度记为 ∥ α ∥ \left\|\alpha\right\| ∥α∥。
- 长度为零的向量叫做零向量,记为0。长度为1的向量叫做单位向量。
- 若向量 α \alpha α经过平移得到向量 β \beta β,则认为 α \alpha α和 β \beta β是相等的。换言之,向量可以在空间内自由平移,因而也常被称为自由向量。
空间向量的线性运算与数量积
空间向量的线性运算
- 设 α , β \alpha,\beta α,β为空间内的两个向量,令 A B → = α \overrightarrow{AB} = \alpha AB=α, B C → = β \overrightarrow{BC} = \beta BC=β,则称向量 A C → \overrightarrow{AC} AC为向量 α \alpha α与 β \beta β的和,记为 α + β \alpha+\beta α+β,即 α + β = A B → + B C → = A C → \alpha+\beta=\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{AC} α+β=AB+BC=AC。求两个向量的和的运算叫做向量的加法。
- 向量的加法运算性质:
交换律: α + β = β + α \alpha+\beta=\beta+\alpha α+β=β+α
结合律: ( α + β ) + γ = α + ( β + γ ) (\alpha+\beta)+\gamma=\alpha+(\beta+\gamma) (α+β)+γ=α+(β+γ)
α + 0 = α \alpha+0=\alpha α+0=α
α + ( − α ) = 0 \alpha+(-\alpha)=0 α+(−α)=0
其中 α , β , γ \alpha,\beta,\gamma α,β,γ为任意向量 - 一个实数 k k k与一个向量 α \alpha α的积是一个向量,记为 k α k\alpha kα,其长度 ∥ k α ∥ = ∣ k ∣ ⋅ ∥ α ∥ \left\| k \alpha \right\|=|k| \cdot \left\| \alpha \right\| ∥kα∥=∣k∣⋅∥α∥。若 ∥ k α ∥ ≠ 0 \left\| k \alpha\right\| \ne 0 ∥kα∥=0,则当 k > 0 k > 0 k>0时, k α k\alpha kα与 α \alpha α同方向;当 k < 0 k<0 k<0时, k α k\alpha kα与 α \alpha α反方向。求一个实数与一个向量的积的运算叫做向量的数乘
- 向量的数乘运算性质:
1 α = α 1\alpha=\alpha 1α=α
( k l ) α = k ( l α ) (kl)\alpha=k(l\alpha) (kl)α=k(lα)
( k + l ) α = k α + l α (k+l)\alpha=k\alpha+l\alpha (k+l)α=kα+lα
k ( α + β ) = k α + k β k(\alpha+\beta)=k\alpha+k\beta k(α+β)=kα+kβ
其中 k , l k,l k,l为任意实数, α , β \alpha,\beta α,β为任意向量。 - 向量的加法和数乘统称为向量的线性运算。
- 设 α 1 , α 2 , ⋯ , α s \alpha_1,\alpha_2,\cdots,\alpha_s α1,α2,⋯,αs为一组向量, k 1 , k 2 , ⋯ , k s k_1,k_2,\cdots,k_s k1,k2,⋯,ks为一组实数,则称
k 1 α 1 + k 2 α 2 + ⋯ + k s α s k_1\alpha_1+k_2\alpha_2+\cdots+k_s\alpha_s k1α1+k2α2+⋯+ksαs为 α 1 , α 2 , ⋯ , α s \alpha_1,\alpha_2,\cdots,\alpha_s α1,α2,⋯,αs的一个线性组合,其中 k 1 , k 2 , ⋯ , k s k_1,k_2,\cdots,k_s k1,k2,⋯,ks称为组合系数 - 设 α 1 , α 2 , ⋯ , α s , β \alpha_1,\alpha_2,\cdots,\alpha_s,\beta α1,α2,⋯,αs,β为一组向量,若存在一组实数 k 1 , k 2 , ⋯ , k s k_1,k_2,\cdots,k_s k1,k2,⋯,ks使
β = k 1 α 1 + k 2 α 2 + ⋯ + k s α s , \beta = k_1\alpha_1+k_2\alpha_2+\cdots+k_s\alpha_s, β=k1α1+k2α2+⋯+ksαs,则称 β \beta β能由 α 1 , α 2 , ⋯ , α s \alpha_1,\alpha_2,\cdots,\alpha_s α1,α2,⋯,αs线性表示。 - 若存在一组不全为零的实数 k 1 , k 2 , ⋯ , k s k_1,k_2,\cdots,k_s k1,k2,⋯,ks使
k 1 α 1 + k 2 α 2 + ⋯ + k s α s = 0 , k_1\alpha_1+k_2\alpha_2+\cdots+k_s\alpha_s=0, k1α1+k2α2+⋯+ksαs=0,则称 α 1 , α 2 , ⋯ , α s \alpha_1,\alpha_2,\cdots,\alpha_s α1,α2,⋯,αs线性相关;否则称 α 1 , α 2 , ⋯ , α s \alpha_1,\alpha_2,\cdots,\alpha_s α1,α2,⋯,αs线性无关 - 设 α \alpha α为非零向量,则向量 β \beta β与 α \alpha α共线的充分必要条件是 β \beta