线性代数学习笔记——行列式

1.引出

通过解二元一次方程组,引出二阶行列式,类比得三阶…n阶。

2.定义

n阶行列式

 ①排列

 由n个自然数1,2,…,n按一定次序排成一列所得的n元数串i1,i2,…in称为一个n级排列

 ②逆序数

 在n级排列i1,i2,…in中,排在第k个数ik前面但比数ik大的数的个数称为ik在这个排列中的逆序数

 ③奇偶排列

 逆序数为奇数的排列为奇排列,逆序数为偶数的排列为偶排列
 在所有n级排列中,只有排列1,2,…,n的逆序数为零,我们称1,2,…,n为自然排列,显然自然排列为偶排列

 ④对换

 将一个排列中的两个元素互换位置,其余元素位置保持不变,这种由给定排列得到新的排列的操作称为对换
 如果对换的两个元素在排列中处于相邻位置上,则称这样的对换为相邻对换

 ⑤行列式的转置


D = ∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ , D ′ = ∣ a 11 a 21 ⋯ a n 1 a 12 a 22 ⋯ a n 2 ⋮ ⋮ ⋮ ⋮ a 1 n a 2 n ⋯ a n n ∣ (1) D = \left| \begin{matrix} a_{11} & a_{12} &\cdots & a_{1n} \\ a_{21} & a_{22} &\cdots & a_{2n} \\ \vdots &\vdots &\vdots &\vdots\\ a_{n1} & a_{n2} &\cdots &a_{nn} \end{matrix} \right| ,D' = \left| \begin{matrix} a_{11} &a_{21} &\cdots &a_{n1} \\ a_{12} &a_{22} &\cdots &a_{n2} \\ \vdots &\vdots &\vdots &\vdots \\ a_{1n} &a_{2n} &\cdots &a_{nn}\\ \end{matrix} \right| \tag{1} D=a11a21an1a12a22an2a1na2nann,D=a11a12a1na21a22a2nan1an2ann(1)
则D = D’。
这里,D’是将D的各个行(列)变成相应的列(行)得到的,称D’为D的转置行列式

行列式展开

 ①余子式和代数余子式

 在n阶行列式D=det(aij)中,把元素aij所在的第i行和第j列划去后,剩下的(n-1)2个元素按照原来的相对位置所构成的n-1阶行列式称为aij余子式,记为Mij,称(-1)i+jMij为aij代数余子式,记为Aij

范德蒙行列式

V ( x 1 , x 2 , . . . , x n ) = ∣ 1 1 ⋯ 1 x 1 x 2 ⋯ x n x 1 2 x 2 2 ⋯ x n 2 ⋮ ⋮ ⋮ ⋮ x 1 n x 2 n ⋯ x n n ∣ = ∏ 1 ≤ i < j ≤ n n ( x j − x i ) V(x_1,x_2,...,x_n) = \left| \begin{matrix} 1 &1 &\cdots &1 \\ x_1 &x_2 &\cdots &x_n \\ x_1^2 &x_2^2 &\cdots &x_n^2 \\ \vdots &\vdots &\vdots &\vdots \\ x_1^n &x_2^n &\cdots &x_n^n \end{matrix} \right| = \prod_{1≤i<j≤n}^n(x_j-x_i) V(x1,x2,...,xn)=1x1x12x1n1x2x22x2n1xnxn2xnn=1i<jnn(xjxi)

3.性质

 ①行列式变换

  • 行列式的转置 = 原行列式
  • 用数k乘以行列式的某一行(列)的所有元素相当与用k乘以该行列式。
  • 如果行列式某一行(列)的元素是两组数之和,则该行列式可以写成两个行列式之和。
  • 互换行列式的两行(列),行列式的值改号。
  • 如果行列式中两行(列)元素对应成比例,则其值为零。
  • 如果将行列式某行(列)改成改行(列)与另一行(另一列)的k倍之和,则行列式的值不变。

 ②行列式展开

  • n阶行列式D=det(aij)等于它的任意行(列)的各元素与其相应的代数余子式的乘积之和,即对任意1 ≤ i ≤ n,
    det(aij) = ai1Ai1 + ai2Ai2 + … + ainAin ,
    det(aij) = a1iA1i + a2iA2i + … + aniAni .
  • n阶行列式的任一行(列)的元素与另一行(列)对应元素的代数余子式的乘积之和等于零。

4.计算

  • 化成三角形行列式计算
  • 化成低阶行列式计算
  • 其他(析因法…)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值