1.引出
通过解二元一次方程组,引出二阶行列式,类比得三阶…n阶。
2.定义
n阶行列式
①排列
由n个自然数1,2,…,n按一定次序排成一列所得的n元数串i1,i2,…in称为一个n级排列
②逆序数
在n级排列i1,i2,…in中,排在第k个数ik前面但比数ik大的数的个数称为ik在这个排列中的逆序数
③奇偶排列
逆序数为奇数的排列为奇排列,逆序数为偶数的排列为偶排列
在所有n级排列中,只有排列1,2,…,n的逆序数为零,我们称1,2,…,n为自然排列,显然自然排列为偶排列
④对换
将一个排列中的两个元素互换位置,其余元素位置保持不变,这种由给定排列得到新的排列的操作称为对换。
如果对换的两个元素在排列中处于相邻位置上,则称这样的对换为相邻对换。
⑤行列式的转置
设
D
=
∣
a
11
a
12
⋯
a
1
n
a
21
a
22
⋯
a
2
n
⋮
⋮
⋮
⋮
a
n
1
a
n
2
⋯
a
n
n
∣
,
D
′
=
∣
a
11
a
21
⋯
a
n
1
a
12
a
22
⋯
a
n
2
⋮
⋮
⋮
⋮
a
1
n
a
2
n
⋯
a
n
n
∣
(1)
D = \left| \begin{matrix} a_{11} & a_{12} &\cdots & a_{1n} \\ a_{21} & a_{22} &\cdots & a_{2n} \\ \vdots &\vdots &\vdots &\vdots\\ a_{n1} & a_{n2} &\cdots &a_{nn} \end{matrix} \right| ,D' = \left| \begin{matrix} a_{11} &a_{21} &\cdots &a_{n1} \\ a_{12} &a_{22} &\cdots &a_{n2} \\ \vdots &\vdots &\vdots &\vdots \\ a_{1n} &a_{2n} &\cdots &a_{nn}\\ \end{matrix} \right| \tag{1}
D=∣∣∣∣∣∣∣∣∣a11a21⋮an1a12a22⋮an2⋯⋯⋮⋯a1na2n⋮ann∣∣∣∣∣∣∣∣∣,D′=∣∣∣∣∣∣∣∣∣a11a12⋮a1na21a22⋮a2n⋯⋯⋮⋯an1an2⋮ann∣∣∣∣∣∣∣∣∣(1)
则D = D’。
这里,D’是将D的各个行(列)变成相应的列(行)得到的,称D’为D的转置行列式
行列式展开
①余子式和代数余子式
在n阶行列式D=det(aij)中,把元素aij所在的第i行和第j列划去后,剩下的(n-1)2个元素按照原来的相对位置所构成的n-1阶行列式称为aij的余子式,记为Mij,称(-1)i+jMij为aij的代数余子式,记为Aij。
范德蒙行列式
V ( x 1 , x 2 , . . . , x n ) = ∣ 1 1 ⋯ 1 x 1 x 2 ⋯ x n x 1 2 x 2 2 ⋯ x n 2 ⋮ ⋮ ⋮ ⋮ x 1 n x 2 n ⋯ x n n ∣ = ∏ 1 ≤ i < j ≤ n n ( x j − x i ) V(x_1,x_2,...,x_n) = \left| \begin{matrix} 1 &1 &\cdots &1 \\ x_1 &x_2 &\cdots &x_n \\ x_1^2 &x_2^2 &\cdots &x_n^2 \\ \vdots &\vdots &\vdots &\vdots \\ x_1^n &x_2^n &\cdots &x_n^n \end{matrix} \right| = \prod_{1≤i<j≤n}^n(x_j-x_i) V(x1,x2,...,xn)=∣∣∣∣∣∣∣∣∣∣∣1x1x12⋮x1n1x2x22⋮x2n⋯⋯⋯⋮⋯1xnxn2⋮xnn∣∣∣∣∣∣∣∣∣∣∣=1≤i<j≤n∏n(xj−xi)
3.性质
①行列式变换
- 行列式的转置 = 原行列式
- 用数k乘以行列式的某一行(列)的所有元素相当与用k乘以该行列式。
- 如果行列式某一行(列)的元素是两组数之和,则该行列式可以写成两个行列式之和。
- 互换行列式的两行(列),行列式的值改号。
- 如果行列式中两行(列)元素对应成比例,则其值为零。
- 如果将行列式某行(列)改成改行(列)与另一行(另一列)的k倍之和,则行列式的值不变。
②行列式展开
- n阶行列式D=det(aij)等于它的任意行(列)的各元素与其相应的代数余子式的乘积之和,即对任意1 ≤ i ≤ n,
det(aij) = ai1Ai1 + ai2Ai2 + … + ainAin ,
det(aij) = a1iA1i + a2iA2i + … + aniAni . - n阶行列式的任一行(列)的元素与另一行(列)对应元素的代数余子式的乘积之和等于零。
4.计算
- 化成三角形行列式计算
- 化成低阶行列式计算
- 其他(析因法…)