Jensen不等式简介及推导

Jensen不等式是描述积分中凸函数性质的重要不等式,适用于下凸和上凸函数。本文介绍了Jensen不等式的基本形式,并通过数学归纳法详细推导了其证明过程,特别是当n=2时的情形,利用拉格朗日中值定理和函数单调性证明了不等式成立。
摘要由CSDN通过智能技术生成

Jensen不等式

Jensen不等式,又名琴森不等式或詹森不等式(均为音译)。它是一个在描述积分的凸函数值和凸函数的积分值间的关系的不等式。它的一般形态是:

1.当且仅当 f ( x ) f(x) f(x)为下凸函数时有
f ( ∑ i = 1 n λ i x i ) ≤ ∑ i = 1 n λ i f ( x i ) , ∑ i = 1 n λ i = 1 , λ i ≥ 0 f(\sum_{i=1}^{n}\lambda_{i}x_{i})\leq \sum_{i=1}^{n}\lambda_{i}f(x_{i}) \quad ,\sum_{i=1}^{n}\lambda_{i}=1,\lambda_{i}\geq0 f(i=1nλixi)i=1nλif(xi),i=1nλi=1,λi0
2.当且仅当 f ( x ) f(x) f(x)为上凸函数时有
f ( ∑ i = 1 n λ i x i ) ≥ ∑ i = 1 n λ i f ( x i ) , ∑ i = 1 n λ i = 1 , λ i ≥ 0 f(\sum_{i=1}^{n}\lambda_{i}x_{i})\geq \sum_{i=1}^{n}\lambda_{i}f(x_{i}) \quad ,\sum_{i=1}^{n}\lambda_{i}=1,\lambda_{i}\geq0 f(i=1nλixi)i=1nλif(xi),i=1nλi=1,λi0

它的最简单形态是:
1.当且仅当 f ( x ) f(x) f(x)为下凸函数时有
f ( x 1 + x 2 2 ) ≤ 1 2 f ( x 1 ) + 1 2 f ( x 2 ) f( \frac{x_{1}+x_{2}}{2})\leq \frac{1}{2}f(x_{1})+\frac{1}{2}f(x_{2}) f(2x1+x2)21f(x1)+21f(x2)
2.当且仅当 f ( x ) f(x) f(x)为上凸函数时有
f ( x 1 + x 2 2 ) ≥ 1 2 f ( x 1 ) + 1 2 f ( x 2 ) f( \frac{x_{1}+x_{2}}{2})\geq \frac{1}{2}f(x_{1})+\frac{1}{2}f(x_{2}) f(2x1+x2)21f(x1)+21f(x2)

Jensen的推导

一般采用数学归纳法进行Jensen不等式的推导和证明。
以下凸函数为例,先看 n = 2 n=2 n=2时的情形。

n = 2 n=2 n=2时,有
f ( λ 1 x 1 + λ 2 x 2 ) ≤ λ 1 f ( x 1 ) + λ 2 f ( x 2 ) , λ 1 + λ 2 = 1 f(\lambda_{1}x_{1}+\lambda_{2}x_{2})\leq\lambda_{1}f(x_{1})+\lambda_{2}f(x_{2})\quad ,\lambda_{1}+\lambda_{2}=1 f(λ1x1+

  • 8
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值