Jordan公式
Jordan公式
先考虑最简单的一种情况:
P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A B ) P(A\cup B) = P(A)\,+ P(B)\, -P(AB) P(A∪B)=P(A)+P(B)−P(AB)
此时,只有A,B两个事件。
如果是A,B,C三个事件呢?
P ( A ∪ B ∪ C ) = P ( A ) + P ( B ) + P ( C ) − P ( A B ) − P ( A C ) − P ( B C ) + P ( A B C ) P(A\cup B\cup C) = P(A)\,+ P(B)\,+P(C) -P(AB)- P(AC)-P(BC)+P(ABC) P(A∪B∪C)=P(A)+P(B)+P(C)−P(AB)−P(AC)−P(BC)+P(ABC)
可如果是四个事件甚至更多呢?
Jordan公式介绍
Jordan公式:设 A 1 , A 2 , A 3 , . . . , A n A_{1},A_{2},A_{3},...,A_{n} A1,A2,A3,...,An是事件,记
p k = ∑ 1 ⩽ j 1 < j 2 < . . . < j k ⩽ n P ( A j 1 A j 2 . . . A j k ) p_{k} = \sum_{1\leqslant j_{1}< j_{2}<...<j_{k}\leqslant n}P(A_{j_{1}}A_{j_{2}}...A_{j_{k}}) pk=1⩽j1<j2<...<jk⩽n∑P(Aj1Aj2...Ajk)
此时有
P ( ⋃ i = 1 n A i ) = ∑ k = 1 n ( − 1 ) k − 1 p k P(\bigcup_{i = 1}^{n}A_{i})=\sum_{k=1}^{n}(-1)^{k-1}p_{k} P(i=1⋃nAi)=k=1∑n(−1)k−1pk
Jordan公式推导
用数学归纳法推导。
由前文介绍可知,Jordan公式对n=1,n=2,n=3时均成立,假设在n-1时也成立并希望以此证明公式对n亦成立。
当 k = n − 1 k=n-1 k=n−1时,有 P ( ⋃ i = 1 n − 1 A i ) = ∑ k = 1 n − 1 ( − 1 ) k − 1 p k ′ P(\bigcup_{i = 1}^{n-1}A_{i})=\sum_{k=1}^{n-1}(-1)^{k-1}{p}'_{k} P(i=1⋃n−1Ai)=k=1∑n−1(−1)k−1pk′
其中, p k ′ = ∑ 1 ⩽ j 1 < j 2 < . . . < j k ⩽ n − 1 P ( A j 1 A j 2 . . . A j k ) , 1 ⩽ k ⩽ n − 1 {p}'_{k}=\sum_{1\leqslant j_{1}< j_{2}<...<j_{k}\leqslant n-1}P(A_{j_{1}}A_{j_{2}}...A_{j_{k}}),\quad1\leqslant k\leqslant n-1 pk