概率论——Jordan公式

本文详细介绍了Jordan公式,从最简单的两个事件的概率并,到多个事件的概率计算,并通过数学归纳法详细推导了Jordan公式的正确性,适用于任意数量的事件概率求和问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Jordan公式

先考虑最简单的一种情况:
P ( A ∪ B ) = P ( A )   + P ( B )   − P ( A B ) P(A\cup B) = P(A)\,+ P(B)\, -P(AB) P(AB)=P(A)+P(B)P(AB)
此时,只有A,B两个事件。

如果是A,B,C三个事件呢?
P ( A ∪ B ∪ C ) = P ( A )   + P ( B )   + P ( C ) − P ( A B ) − P ( A C ) − P ( B C ) + P ( A B C ) P(A\cup B\cup C) = P(A)\,+ P(B)\,+P(C) -P(AB)- P(AC)-P(BC)+P(ABC) P(ABC)=P(A)+P(B)+P(C)P(AB)P(AC)P(BC)+P(ABC)
可如果是四个事件甚至更多呢?

Jordan公式介绍

Jordan公式:设 A 1 , A 2 , A 3 , . . . , A n A_{1},A_{2},A_{3},...,A_{n} A1,A2,A3,...,An是事件,记
p k = ∑ 1 ⩽ j 1 < j 2 < . . . < j k ⩽ n P ( A j 1 A j 2 . . . A j k ) p_{k} = \sum_{1\leqslant j_{1}< j_{2}<...<j_{k}\leqslant n}P(A_{j_{1}}A_{j_{2}}...A_{j_{k}}) pk=1j1<j2<...<jknP(Aj1Aj2...Ajk)
此时有
P ( ⋃ i = 1 n A i ) = ∑ k = 1 n ( − 1 ) k − 1 p k P(\bigcup_{i = 1}^{n}A_{i})=\sum_{k=1}^{n}(-1)^{k-1}p_{k} P(i=1nAi)=k=1n(1)k1pk

Jordan公式推导

用数学归纳法推导。
由前文介绍可知,Jordan公式对n=1,n=2,n=3时均成立,假设在n-1时也成立并希望以此证明公式对n亦成立。

k = n − 1 k=n-1 k=n1时,有 P ( ⋃ i = 1 n − 1 A i ) = ∑ k = 1 n − 1 ( − 1 ) k − 1 p k ′ P(\bigcup_{i = 1}^{n-1}A_{i})=\sum_{k=1}^{n-1}(-1)^{k-1}{p}'_{k} P(i=1n1Ai)=k=1n1(1)k1pk
其中, p k ′ = ∑ 1 ⩽ j 1 < j 2 < . . . < j k ⩽ n − 1 P ( A j 1 A j 2 . . . A j k ) , 1 ⩽ k ⩽ n − 1 {p}'_{k}=\sum_{1\leqslant j_{1}< j_{2}<...<j_{k}\leqslant n-1}P(A_{j_{1}}A_{j_{2}}...A_{j_{k}}),\quad1\leqslant k\leqslant n-1 pk

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值