大模型能否真正理解上下文?

人工智能咨询培训老师叶梓 转载标明出处

尽管对LLMs的评估涵盖了自然语言处理(NLP)的各个领域,但对它们理解上下文特征的语言能力的探讨却相对有限。为了填补这一空白,乔治城大学和苹果公司的研究者们共同提出了一种新的上下文理解基准测试,旨在评估生成模型的性能。

任务选择与设计

研究者们构建了一个评估大模型(LLMs)上下文理解能力的基准测试。这个基准测试精心设计了四个任务,涵盖了九个不同的数据集,以此来全面地评估模型对上下文的理解。

用于评估语言模型上下文理解能力的四个不同任务和九个数据集

指代消解

任务说明: 指代消解任务对于理解文本中表达的整体含义至关重要。这项任务检测语言模型在文档内把握指代关系和上下文细微差别的能力。

数据集:

  • WSC273:取自Winograd Schema Challenge的前273个例子,这个数据集要求系统阅读一个包含模糊代词的句子,并从两个选项中选择正确的指代对象。
  • OntoNotes 5.0:这是一个人工标注的文档语料库,包含了句法、命题、命名实体、词义和文档内的指代关系等多层次的语言信息。

评估方法: 研究者们设计了一种多项选择任务,提供了提及(mentions)并评估模型在消解任务上的表现。每个选项代表一个可能的可标记跨度(markable span)。

示例(Table 1):

  • 指令:请仔细阅读以下段落。对于每个段落和选项,你必须识别加粗提到的内容所指的选项。如果加粗的提及没有任何先行词,则选择“无先行词”。
  • 上下文:...为了表达its决心,中国证券监管部门将这次股票改革比作已经掷出的骰子...
  • 选项:A. 无先行词 B. 中国证券监管部门 C. 这次股票改革
  • 问题:its指的是什么?
  • 答案:B

对话状态跟踪

任务说明: 对话状态跟踪是任务型对话(TOD)建模中的一个重要任务,对话代理需要追踪用户在对话过程中提供的关键信息。

数据集:

  • MultiWOZ:这个数据集提供了用户在寻找餐厅时表达的约束条件的例子。

评估方法: 研究者们采用了由Heck等人(2023)提出的一种直接且简化的ICL方法&#

上下文窗口(Context Window)的大小直接影响大模型理解和生成文本的质量及效率。以下是其影响的具体方面: ### 1. 理解长期依赖 较大的上下文窗口可以让模型捕捉到更远距离的信息,这对于理解复杂的句子结构、长篇论述或需要背景知识的任务至关重要。例如,在问答系统中,如果一个问题涉及到文章开头提到的概念,那么更大的上下文窗口可以帮助模型准确地回忆起相关信息,从而给出正确的答案。 ### 2. 内存消耗与计算资源 随着上下文窗口增大,模型所需存储的历史信息量也增加,这导致更高的内存占用和更多的计算需求。尤其是在硬件资源有限的情况下,过大的上下文窗口可能会造成运行缓慢甚至无法完成任务的问题。 ### 3. 泛化能力的影响 适当的上下文窗口可以提升模型的泛化能力,因为它能更好地学习语言模式而不局限于短片段间的关联。然而,过于宽广的视野也可能引入噪声干扰,使得模型难以区分真正有用的信号与其他无关内容之间的差异。 ### 4. 实际应用场景的要求 不同类型的应用对上下文窗口有不同的偏好。比如,摘要生成通常只需要较短的时间跨度即可覆盖整个文档的核心要点;而对于像机器翻译这样的任务,则可能受益于稍长一点的记忆范围以维持一致性。 综上所述,选择合适的上下文窗口是一个权衡的过程,既要考虑模型的效果也要兼顾实际使用的约束条件。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人工智能大模型讲师培训咨询叶梓

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值