Graph Convolution Based Cross-Network Multi-Scale Feature Fusion for Deep Vessel Segmentation

Graph Convolution Based Cross-Network Multi-Scale Feature Fusion for Deep Vessel Segmentation

Gangming Zhao

IEEE Transactions on Medical Imaging 2023

Abstract

血管分割广泛用于帮助血管疾病诊断。使用现有方法重建的血管往往不够准确,无法满足临床使用标准。这是因为3D血管结构非常复杂,具有包括稀疏性和各向异性等特殊特征。在本文中,我们提出了一种用于血管分割的创新混合深度神经网络。我们的网络由两个级联子网络组成,分别执行初始和细化分割。第二个子网络有两个紧密耦合的组件,一个传统的基于CNN的U-Net和一个图U-Net。在这两种U型网络之间进行跨网络多尺度特征融合,有效支持高质量的血管分割。整个级联网络可以从端到端进行训练。第二个子网络中的图是根据血管概率图以及原始CT体积中的外观和语义相似性构建的。为了解决血管稀疏性和各向异性带来的挑战,较高比例的图节点分布在可能包含血管的区域,而较高比例的边跟随潜在附近血管的方向。大量的实验表明,我们的深度网络在多个公共和内部数据集上都实现了最先进的性能。

Problems

  1. 血管稀疏性

    将密集的3D CT转换为稀疏图结构

  2. 血管各向异性

    血管是高度方向性和各向异性的拉长管结构,传统的CNN采用统一的空间采样,无法对这种稀疏和各向异性结构进行建模,从而导致结果中断或不完整

    利用图结构进行学习表示,相比均匀空间采样的方式,更能对各向异性进行建模

Methods

image-20230508144654357

  1. 初步分割

    1. 用于发现包含血管的概率相对较高的局部图像区域
    2. 产生初步分割掩码
    3. 利用7*7的膨胀卷积来扩大感受野,以增加概率值相对较高区域的图像大小。
  2. 构建图结构

    image-20230508144942688
    1. 较高百分比的图节点分布在初步概率图值相对较大的区域,而较高百分比的边遵循初步血管分割掩模的方向。

    2. 具体实现

      1. 图节点:基于SLIC算法进行生成,聚合为节点的依据:区域内的血管概率之和较高,区域内的像素外观相似

        image-20230509091944388

        SLIC算法:超像素聚类算法,把一张图中具有相似特征的像素进行聚类,形成一个更具有代表性的“大像素”

        在这里插入图片描述

        如何保证较高百分比的图节点分布在潜在血管区域?

        ​ 利用测地线距离度量,提高初步分割结果内的区分度,虽然都是接近1的大概率值,但通过测地线距离,mask点之间会存在中心与边缘的距离差异,从而在初步分割结果中生成更多的节点。(红色代表最远值1.0,蓝色代表最近值0.0)

        image-20230509100812005

        测地线距离不会影响到背景区域的节点生成,可以提高前景区域的节点密度

        samples_feature_AGD
      2. 图边:只考虑局部连通图,每个节点只连接到其他附近节点。每条边都会有一个权重,这个权重计算自节点之间的语义一致性和外观相似性

        image-20230508144208278 image-20230508144219302

        ​ 边生成的依据:两点之间的测地线距离要在阈值范围内

    3. 图像特征与图特征的融合方式

      参考了Cross-View Correspondence Reasoning Based on Bipartite Graph Convolutional Network for Mammogram Mass Detection

      1. 图像特征映射到节点域作图卷积进行特征增强融合
      2. 再反映射回图像特征产生新的编码特征

总结

  1. 论文提出了一种利用图构建方法来解决血管稀疏性和各向异性的难点
    1. 首先,基于初步分割mask进行图构建,可以有效解决血管稀疏性的问题,将潜在血管区域抽取出来进行建模学习,同时论文也辅以将图像特征映射到节点域,进一步提高了图结构内的语义信息
    2. 其次,在各向异性上,利用节点和邻边建立的方法进行解决,还是有些缺少解释性,可能可以在图卷积中对结构建模进行更深入的扩展
  2. 代码没有开源
  3. 一些思考:
    1. 如果基于测地线距离,建立节点间的有向边,由中心指向边缘,能否建模整体的结构信息
    2. 根据SLIC算法,将图像中的每一部分映射为一个图节点,一个图节点包含的像素信息可自定义,同时辅以测地线距离,可以在血管区域生成更多的节点。参考这样的图节点构建方法,在图卷积方案上加以更有解释性的方法,同时再保证映射回图像特征的合理性,是否有可行性?或者不映射回去,因为映射回去难以解释是否存在偏差是否合理,直接让图像特征根据图特征进行细化预测
  4. 图节点的构建:
    1. 三种类型的节点:高概率血管节点、潜在血管区域节点、背景节点
    2. 边:两阶段生成,只建立邻居节点边
      1. 两节点是否应该存在边,背景节点不应该与其他节点存在边
      2. 边权重计算:综合计算两节点之间的语义一致性和外观相似性,血管节点之间应该是高权重,血管节点与潜在血管区域节点至少有权重但有高低
      3. 图卷积的目标就是更新节点特征和边特征,主要解决潜在血管区域节点的判断,是否有办法能添加深监督:将label也转化为图结构的样式进行监督。
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
"Channel-wise Topology Refinement Graph Convolution for Skeleton-Based Action Recognition" 是一篇关于基于骨架的动作识别的论文。如果要提出改进方法,可以考虑以下几个方向: 1. 模型结构改进:可以尝试改进论文中提出的Channel-wise Topology Refinement Graph Convolution模块。例如,可以探索更复杂的图卷积模型结构,引入更多的注意力机制或者跨层连接,以提高模型对骨架数据的建模能力。 2. 数据增强和预处理:骨架数据可能存在缺失或者噪声,可以尝试使用数据增强技术(如旋转、平移、缩放)来增加数据的多样性和鲁棒性,或者使用预处理技术(如滤波、插值)来处理数据中的噪声和缺失。 3. 图结构优化:可以尝试优化骨架数据的图结构表示。例如,可以使用图剪枝算法来去除冗余的边或节点,或者使用图生成算法来自动构建更准确的图结构。 4. 跨模态信息融合:可以考虑将骨架数据与其他传感器数据(如深度图像或RGB图像)进行融合。通过融合不同模态的信息,可以提高对动作的理解和识别能力。 5. 模型训练优化:可以探索更有效的模型训练方法,例如引入更合适的损失函数或者优化算法。此外,可以尝试使用迁移学习或领域自适应的方法,将从其他相关任务或领域中学到的知识迁移到骨架动作识别任务中。 以上是一些可能的改进方向,具体的改进方法需要根据具体问题和实验结果来确定。同时,也可以参考相关领域的最新研究和技术进展,以获取更多的启发和创新点。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值