每日Attention学习3——Cross-level Feature Fusion

模块出处

[link] [code] [PR 23] Cross-level Feature Aggregation Network for Polyp Segmentation


模块名称

Cross-level Feature Fusion (CFF)


模块作用

双级特征融合


模块结构

在这里插入图片描述


模块代码
import torch
import torch.nn as nn


class BasicConv2d(nn.Module):
    def __init__(self, in_planes, out_planes, kernel_size, stride=1, padding=0, dilation=1):
        super(BasicConv2d, self).__init__()
        self.conv = nn.Conv2d(in_planes, out_planes,
                              kernel_size=kernel_size, stride=stride,
                              padding=padding, dilation=dilation, bias=False)
        self.bn = nn.BatchNorm2d(out_planes)
        self.relu = nn.ReLU(inplace=True)

    def 
### Multi-head Latent Attention Mechanism in YOLO Object Detection Model Incorporating multi-head latent attention mechanisms into the YOLO object detection framework enhances feature extraction and context understanding within images. This approach allows for more robust identification of objects by focusing on relevant regions while suppressing noise or irrelevant information. The integration of such an attention mechanism can be achieved through several modifications to the original architecture: #### Feature Map Enhancement By applying a multi-head self-attention layer after each convolutional block, deeper interactions between spatial positions are captured. Each head learns different aspects of dependencies across locations, leading to richer representations that better capture complex patterns present in real-world scenes[^1]. ```python class MultiHeadAttention(nn.Module): def __init__(self, d_model, num_heads): super(MultiHeadAttention, self).__init__() assert d_model % num_heads == 0 self.d_k = d_model // num_heads self.num_heads = num_heads self.W_q = nn.Linear(d_model, d_model) self.W_v = nn.Linear(d_model, d_model) def forward(self, Q, K, V, mask=None): batch_size = Q.size(0) # Linear projections q = self.W_q(Q).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2) v = self.W_v(V).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2) # Scaled dot-product attention scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k) if mask is not None: scores = scores.masked_fill(mask == 0, -1e9) attn_weights = F.softmax(scores, dim=-1) output = torch.matmul(attn_weights, v).transpose(1, 2).contiguous().view(batch_size, -1, self.d_model) return output ``` This method improves upon traditional CNN-based approaches where only local receptive fields contribute directly to activations at higher layers. Instead, every position has access to global contextual cues via learned weighted sums over all other positions' features. #### Contextual Information Aggregation To further strengthen interdependencies among detected entities, cross-scale fusion techniques may also incorporate this type of attention module. By aggregating multi-level semantic knowledge from various scales simultaneously, performance gains become evident especially when dealing with occlusions or cluttered backgrounds common in practical applications like autonomous driving systems. Despite these advancements, challenges remain regarding computational efficiency due to increased parameter counts associated with additional modules as well as potential difficulties during training caused by vanishing gradients problems inherent in deep networks.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值