文章目录
- 解读
-
- Abstract—摘要
- Introduction—介绍
- Related Work—相关工作
- Deep Residual Learning—深度残差学习
- Experiments—实验
-
- ImageNet Classification—ImageNet分类
- Plain网络
- 翻译
- 精读
- 残差网络
- 翻译
- 精读
- Identity vs. Projection Shortcuts—恒等 vs 映射 Shortcuts
- 翻译
- 精读
- Deeper Bottleneck Architectures—深度瓶颈结构
- 翻译
- 精读
- Comparisons with State-of-the-art Methods—与最优秀方法的比较
- 翻译
- 精读
- 4.2. CIFAR-10 and Analysis— CIFAR-10和分析
- 翻译
- 精读
- Analysis of Layer Responses—分析每一层的网络的响应分布
- 翻译
- 精读
- Exploring Over 1000 layers—过深层网络
- 翻译
- 精读
- 4.3. Object Detection on PASCAL and MS COCO—PASCAL和MS COCO上的对象检测
- 翻译
- 精读
- 论文十问
- 代码复现
解读
Abstract—摘要
翻译
更深的神经网络往往更难以训练,我们在此提出一个残差学习的框架,以减轻网络的训练负担,这是个比以往的网络要深的多的网络。我们明确地将层作为输入学习残差函数,而不是学习未知的函数。我们提供了非常全面的实验数据来证明,残差网络更容易被优化,并且可以在深度增加的情况下让精度也增加。在ImageNet的数据集上我们评测了一个深度152层(是VGG的8倍)的残差网络,但依旧拥有比VGG更低的复杂度。残差网络整体达成了3.57%的错误率,这个结果获得了ILSVRC2015的分类任务第一名,我们还用CIFAR-10数据集分析了100层和1000层的网络。
在一些计算机视觉识别方向的任务当中,深度表示往往是重点。我们极深的网络让我们得到了28%的相对提升(对COCO的对象检测数据集)。我们在深度残差网络的基础上做了提交的版本参加ILSVRC和COCO2015的比赛,我们还获得了ImageNet对象检测,Imagenet对象定位,COCO对象检测和COCO图像分割的第一名。
精读
主要内容
**背景:**神经网络的深度越深,越难以训练
**本文贡献:**本文展示了一种残差学习框架,能够简化使那些非常深的网络的训练,该框架能够将层作为输入学习残差函数,而不是学习未知的函数。
**结果:**本文提供了全面

订阅专栏 解锁全文
1160

被折叠的 条评论
为什么被折叠?



