图像纹理检测算法
LBP检测算法
原文链接:https://blog.csdn.net/tiandijun/article/details/45561981
https://blog.csdn.net/andylanzhiyong/article/details/84707889
http://blog.csdn.net/zouxy09/article/details/7929531
LBP检测模式:
LBP(Local Binary Pattern,局部二值模式)是一种用来描述图像局部纹理特征的算子;LBP检测算法具有旋转不变性和灰度不变性等显著的优点。
原始的LBP算子定义为在33的窗口内,以窗口中心像素为阈值,将相邻的8个像素的灰度值与其进行比较,若周围像素值大于中心像素值,则该像素点的位置被标记为1,否则为0。这样,33邻域内的8个点经比较可产生8位二进制数(通常转换为十进制数即LBP码,共256种),即得到该窗口中心像素点的LBP值,并用这个值来反映该区域的纹理信息。
如上图所示实际应用中烟支之间紧密贴合,如下图所示而基本的LBP算子的最大缺陷在于它只覆盖了一个固定半径范围内的小区域,正常工作状态下能够稳定检测出正常烟支,但是在实际运行中,烟支异常状态具有恒大的不确定性,创这显然不能满足不同尺寸和频率纹理的需要。
为了适应不同尺寸和频率纹理的需要,并达到灰度和旋转不变性的要求,在实际应用中对LBP算子进行了改进,将3×3邻域扩展到任意邻域,并用圆形邻域代替了正方形邻域,改进后的LBP算子允许在半径为R的圆形邻域内有任意多个像素点。从而得到了如下图的半径为R的圆形区域内含有P个采样点的LBP算子。
一个LBP算子可以产生不同的二进制模式,对于半径为R的圆形区域内含有P个采样点的LBP算子将会产生P2种模式。纹理特征的检测算法中随着邻域集内采样点数的增加,二进制模式的种类是急剧增加的。为了防止过多的二值模式对于纹理的提取、识别、分类及信息的存取产生干扰。同时,过多的模式种类对于纹理的表达是不利的。因此,在实际检测中对原始的LBP模式进行降维,使得数据量减少的情况下能最好的代表图像的信息。
为了解决二进制模式过多的问题,提高统计性,方案中提出了采用一种“等价模式”来对LBP算子的模式种类进行降维。在烟支状态监控的实际图像中,绝大多数LBP模式最多只包含两次从1到0或从0到1的跳变。因此,当某个LBP所对应的循环二进制数从0到1或从1到0最多有两次跳变时,该LBP所对应的二进制就称为一个等价模式类。
通过这样的改进,二进制模式的种类大大减少,而不会丢失任何信息。模式数量由原来的2P种减少为 P ( P-1)+2种,其中P表示邻域集内的采样点数。对于3×3邻域内8个采样点来说,二进制模式由原始的256种减少为58种,这使得特征向量的维数更少,并且可以减少高频噪声带来的影响。
因为,LBP算子得到的这个“特征”跟位置信息是紧密相关的。直接对两幅图片提取这种“特征”,并进行判别分析的话,会因为“位置没有对准”而产生很大的误差。实际应用中将一幅图片划分为若干的子区域,对每个子区域内的每个像素点都提取LBP特征,然后,在每个子区域内建立LBP特征的统计直方图。如此一来,每个子区域,就可以用一个统计直方图来进行描述;整个图片就由若干个统计直方图组成;
例如:一幅100100像素大小的图片,划分为1010=100个子区域(可以通过多种方式来划分区域),每个子区域的大小为1010像素;在每个子区域内的每个像素点,提取其LBP特征,然后,建立统计直方图;这样,这幅图片就有1010个子区域,也就有了1010个统计直方图,利用这1010个统计直方图,就可以描述这幅图片了。之后,我们利用各种相似性度量函数,就可以判断两幅图像之间的相似性了;
灰度共生矩阵算法:
数字图像处理—图像纹理特征
https://blog.csdn.net/wsp_1138886114/article/details/108709277
https://blog.csdn.net/guanyuqiu/article/details/53117507