讲解机器学习中的 K-均值聚类算法及其优缺点。

K-均值聚类算法是一种无监督学习算法,通过将样本分成 K 类来发现数据的内在结构,具体步骤如下:

  1. 随机选择 K 个中心点作为初始的聚类中心
  2. 将每个样本点分配到距离它最近的中心点所在的类别
  3. 重新计算每个类别的中心点位置
  4. 重复步骤2和3,直到中心点的位置不再发生变化或达到最大迭代次数。

优点:

  1. 算法简单、速度快,适用于大规模数据集。
  2. 可以处理多维数据。
  3. 对于基于距离度量的样本微小变化敏感,不易受异常值的影响。

缺点:

  1. K 值需要手动输入,不同的 K 值可能会得到不同的聚类结果。
  2. 对于非球形的类别结构效果较差。
  3. 对于数据分布较为密集、噪声较大、聚类数目不确定的数据集,效果也会较差。

总之,K-均值聚类算法是一种经典的聚类算法,适用于许多数据集,但是其需要选定合适的 K 值并且对于特定的数据集效果可能较差,需要结合实际问题进行选择

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值