K-均值聚类算法是一种无监督学习算法,通过将样本分成 K 类来发现数据的内在结构,具体步骤如下:
- 随机选择 K 个中心点作为初始的聚类中心
- 将每个样本点分配到距离它最近的中心点所在的类别
- 重新计算每个类别的中心点位置
- 重复步骤2和3,直到中心点的位置不再发生变化或达到最大迭代次数。
优点:
- 算法简单、速度快,适用于大规模数据集。
- 可以处理多维数据。
- 对于基于距离度量的样本微小变化敏感,不易受异常值的影响。
缺点:
- K 值需要手动输入,不同的 K 值可能会得到不同的聚类结果。
- 对于非球形的类别结构效果较差。
- 对于数据分布较为密集、噪声较大、聚类数目不确定的数据集,效果也会较差。
总之,K-均值聚类算法是一种经典的聚类算法,适用于许多数据集,但是其需要选定合适的 K 值并且对于特定的数据集效果可能较差,需要结合实际问题进行选择