GRIT论文阅读笔记

在这里插入图片描述

  • 一篇试图统一生成任务和编码任务的工作,就是把只能完成生成任务的GPT改成既能生成又能encode。
  • 思路其实很简单,就是在输入的时候添加instruction tokens来指引模型做representation还是generation,然后各自算损失。representation任务用的是document和query的对比学习。把最后一层的token给mean pooling(只对word tokens做,不对instruction做)出一个embedding算对比损失,做generation的时候就按generation的流程来,思路很简单没什么特别的。
  • 另一点细节是representation的时候是没有mask的,generation的时候才做mask
    在这里插入图片描述
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值