几种图像直方图均衡化方法介绍

最近由于项目需求,想了解一下直方图均衡相关的算法,顺便写个笔记

  • 首先是最初最简单的histogram equalization(HE)算法,太常见这里就不详细展开了,总之是希望直方图更加趋于平均化分布,求得了亮度值到亮度值的映射,从而调整直方图。HE算法对低动态范围的图片效果比较好,能够拉伸动态范围,但在其他情况下容易使得相邻直方被合并,直方数减少,对比度降低。同时,HE算法的处理结果亮度变化较大且不固定,容易产生过高亮度的饱和值和过低亮度的值。后续有许多改进的直方图均衡算法,在下面一一介绍。

  • brightness preserving bi-histogram equalization (BBHE):思路很简单,统计亮度均值,将直方图划分为两个子直方图分别进行直方图均衡化。
    在这里插入图片描述

  • dualistic sub-image histogram equalization(DSIHE) :把BBHE的划分值改为亮度中值即是DSIHE算法

  • Minimum mean brightness error bi-histogram equalization (MMBEBHE):把BBHE的划分值从0到L-1逐个尝试,计算每种划分方案的直方图均衡结果的亮度均值,选择均衡结果亮度均值与原图亮度均值相差最小的划分值

  • recursive mean-separate histogram equalization(RMSHE):以上都是二分直方图,从RMSHE开始思路拓宽,直方图可以分为多个子图。RMSHE先用直方图的亮度均值去划分出左右两个子图,然后计算左右两个子图各自的亮度均值,依次类推可以迭代地划分出2的r次方个子图,对每个子图分别进行HE算法

  • recursive sub-image histogram equalization (RSIHE):把RMSHE的划分值改为中值即为RSIHE

  • Multipeak histogram equalization with brightness preserving (MPHEBP):以直方图的局部最大值作为划分值,有k个局部最大值就有k+1个子图,对k+1个子图分别进行HE

  • dynamic histogram equalization (DHE):到这里又是一个突破,在直方图划分后子图HE的基础上,根据每个直方图的子图的像素个数,对每个子图的分布范围进行重分配。而划分值使用的是局部最小值

  • Brightness preserving dynamic histogram equalization (BPDHE):把DHE的划分值改回局部最大值,并在均衡化后进行归一化,全图乘以一个比例系数,把亮度均值调整为原图的亮度均值。

  • 对了,前面说的算法都可以加一个trick,即平滑化,对均衡前的直方图用一维高斯滤波器进行平滑,然后再均衡化;

  • 除了平滑化的trick,还有一个最大值限制的trick,可以把限制每个直方的最大值,并把多出来的部分均匀分配到每个直方上。

  • 各直方图均衡化方法的效果图如下图所示:
    在这里插入图片描述

参考资料

H. Ibrahim and N. S. P. Kong, “Brightness preserving dynamic histogram equalization for image contrast enhancement,” TCE, vol. 53, no. 4, pp. 1752–1758, 2007.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值