Retinexformer 论文阅读笔记

Retinexformer: One-stage Retinex-based Transformer for Low-light Image Enhancement

在这里插入图片描述

  • 清华大学、维尔兹堡大学和苏黎世联邦理工学院在ICCV2023的一篇transformer做暗图增强的工作,开源。
  • 文章认为,Retinex的 I = R ⊙ L I=R\odot L I=RL假设干净的R和L,但实际上由于噪声,并不干净,所以分别为L和R添加干扰项,把公式改成如下:
    在这里插入图片描述
  • 本文采用先预测 L ‾ \overline L L再使用 I ⊙ L ‾ I\odot\overline L IL来预测增强结果的retinex范式。结合上面公式可以得到:
    在这里插入图片描述
  • 其中第一项是因为假设 L ⊙ L ‾ = 1 L\odot\overline L=1 LL=1,所以第一项是我们要的增加结果,是干净的R,而第二项是由于 L ^ \hat L L^引进的干扰,即过曝或欠曝的干扰,第三项是 R ^ \hat R R^引进的干扰,即噪声和伪影。第二项第三项统称为corruption,得到下式:
    在这里插入图片描述
    由于 I l u I_{lu} Ilu还包含corruption,它并不是我们要的最终增强结果。我们可以先估计 I l u I_{lu} Ilu,再将其中的C去掉,得到最终的增强结果
  • 网络结构如下图所示,其中 L p L_p Lp是图片的三通道均值。下面的图对模块的展开方式有点奇怪。其实就是对concate后的亮度图和原图,提取 L ‾ \overline L L和特征 F l u F_{lu} Flu,然后用 F l u F_{lu} Flu对后面的修复过程中transformer 的V 进行rescale,也就是用在了illumination-guided attention block。后面的修复过程就是把初步的增强结果进行细化,抑制过曝区域,去噪的过程。

在这里插入图片描述

  • 实验结果如下图所示,只给了PSNR和SSIM,不过没有和LLFlow比,所以区区22的PSNR也敢称SOTA。
    在这里插入图片描述
  • 也比较了exdark上的增强结果和多个数据集上的user study
    在这里插入图片描述
  • 个人感觉这篇工作没什么亮点,就是搞网络结构,但思路又不是特别亮眼,效果也没有特别好,还没有给lpips niqe LOE等指标。
### RetinexFormer介绍 RetinexFormer是一种基于Transformer架构的一阶段低光照图像增强方法。该模型旨在解决传统低光照增强算法中存在的色彩失真、细节丢失等问题,通过引入内部引导变换(IGT),将传统的Retinex理论与现代深度学习技术相结合[^2]。 #### 模型结构特点 - **一阶段框架设计**:RetinexFormer采用了一种简单而有效的一阶段框架(ORF)。此框架能够直接从输入的低光图像中估计出合理的照明信息,并据此调整像素亮度分布,从而实现自然且真实的视觉效果提升[^3]。 - **融合Retinex理论**:利用经典的Retinex理论来指导网络的设计,在保持原有颜色特性的基础上改善暗部区域的表现力。具体来说,就是把原始图片分解成反射分量和光照分量两部分处理后再合成最终结果[^1]。 - **高效的数据表示能力**:借助于自注意力机制的优势,使得模型可以更好地捕捉全局上下文依赖关系以及局部特征之间的关联性,进而提高了对于复杂场景下不同物体表面材质属性的理解精度。 ```python import torch from retinexformer import RetinexFormerModel model = RetinexFormerModel() input_image = torch.randn(1, 3, 256, 256) # 假设输入尺寸为 (batch_size=1, channels=3, height=256, width=256) output_enhanced_image = model(input_image) print(output_enhanced_image.shape) # 输出应具有相同的形状 ``` ### 应用领域 - **夜间监控视频质量优化**:通过对采集到的画面进行实时预处理,使后续分析任务更加容易执行,比如人脸识别、车牌识别等操作准确性会显著提高[^4]。 - **自动驾驶辅助系统中的环境感知模块**:当车辆行驶至光线条件较差路段时,经过增强后的影像有助于传感器更精准地判断周围障碍物位置及距离信息,保障行车安全。 - **医疗影像诊断支持工具开发**:某些特殊情况下拍摄所得X射线片可能存在曝光不足现象,此时运用此类技术可帮助医生获得更为清晰直观的观察视角,有利于病情评估工作开展。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值