Retinexformer 论文阅读笔记

清华大学等机构在ICCV2023上发布了一种基于Retinex的Transformer模型(Retinexformer),用于低光图像增强。论文提出了一种先预测原始亮度并去除噪声的Retinex范式,通过Transformer进行修复。尽管实验结果显示了PSNR和SSIM,但作者认为该工作亮点不多,效果一般且未全面比较其他方法。

Retinexformer: One-stage Retinex-based Transformer for Low-light Image Enhancement

在这里插入图片描述

  • 清华大学、维尔兹堡大学和苏黎世联邦理工学院在ICCV2023的一篇transformer做暗图增强的工作,开源。
  • 文章认为,Retinex的I=R⊙LI=R\odot LI=RL假设干净的R和L,但实际上由于噪声,并不干净,所以分别为L和R添加干扰项,把公式改成如下:
    在这里插入图片描述
  • 本文采用先预测L‾\overline LL再使用I⊙L‾I\odot\overline LI
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值