李宏毅深度学习笔记3

  • 如果使用traditional supervised approach,输出的图片会比较模糊,因为最后计算距离没有很好的损失函数 。这时可以使用traditional GAN的方法,将待处理图片作为condition,将处理结果做为真实图片,将G的输出作为D的输入,同时可以在G的输出处加一个neck损失函数度量与原图像的相似性,可以有效地抑制GAN加一些多余的东西

  • 风格转换:使用cycle GAN或者disco GAN(只是名字和发现者不一样,内容一样)将原始图片作为第一个G的输入,产生带有梵高风格的画,用一个D来判断这张画是不是梵高风格,用第二个G来讲第一个G的输出作为输入产生复原的原始图片
    当训练完成,你可以获得两个G,其作用是相反的。
  •  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值