- 如果使用traditional supervised approach,输出的图片会比较模糊,因为最后计算距离没有很好的损失函数 。这时可以使用traditional GAN的方法,将待处理图片作为condition,将处理结果做为真实图片,将G的输出作为D的输入,同时可以在G的输出处加一个neck损失函数度量与原图像的相似性,可以有效地抑制GAN加一些多余的东西
- 风格转换:使用cycle GAN或者disco GAN(只是名字和发现者不一样,内容一样)将原始图片作为第一个G的输入,产生带有梵高风格的画,用一个D来判断这张画是不是梵高风格,用第二个G来讲第一个G的输出作为输入产生复原的原始图片
当训练完成,你可以获得两个G,其作用是相反的。