吴恩达机器学习:神经网络学习和作业

(一)神经网络模型理解

1.1 模型

在这里插入图片描述这是一个三层神经网络,第一层为输入层,第二层为隐藏层,第三层为输出层。

简单模型

  • 线性回归模型
  • 逻辑回归模型

优点是容易理解、可解释性较强,但是为了达到相对好的预测效果,可对原始特征进一步抽象,增加更多的特征项来弥补模型在处理非线性问题上的缺陷。

在这里插入图片描述
LR是一种广义的线性模型,为了提高LR对非线性问题的处理能力,要引入多项式特征,为了充分考虑特征关联,通常也会执行特征之间交叉组合。若仅考虑二次项,也就是只考虑特征两两组合,这样也会得到接近5000个组合特征,若再考虑三次项,四此项呢?组合特征的数量会越来越庞大,空间会膨胀,项数过多可能会带来的问题:模型容易过度拟合、在处理这些项时计算量过大。

引入神经网络来解决包含大量特征的数据分类问题。

复杂模型:

神经网络,神经网络模型是参考生物神经网络处理问题的模式而建立的一种复杂网络结构。
在这里插入图片描述

在这里插入图片描述

其缺点就是相对难理解、可解释性不强;优点是这种模型一般不需要像LR那样在特征获取上下这么大的功夫,它可以通过隐层神经元对特征不断抽象,从而自动发觉特征关联,进而使得模型达到良好的表型。

1.2 神经网络模型(前馈)

在神经网络中,神经元又称激活单元,每个激活单元都会采纳大量的特征作为输入,然后根据自身特点提供一个输出,供下层神经元使用。

在这里插入图片描述
其中, x 0 x_{0} x0表示偏置项,它通常作为单元的固有属性而被添加到模型中,一般取值为1; θ \theta θ是模型参数,也称为权重,起到放大或缩小输入信息的作用;而logistics神经元会将输入信息进行汇总并添加一个非线性变换,从而获得神经元输出。神经网络就是由多个这样的logistics神经元按照不同层次组织起来的网络,每一层的输出都作为下一层的输入,如下图:

在这里插入图片描述第一层为输入层(Input Layer),最后一层为输出层(Output Layer),中间一层为隐藏层(Hidden Layers)。我们为每一层都增加一个偏差单位(bias unit)

1.3 建立神经网络模型

标记:

a i ( h ) a_{i}^{(h)} ai(h)​:表示第 h层第 i个神经元的激活值

θ j i ( k ) \theta _{ji}^{(k)} θji(k)​:表示完成从第 k层向第 k+1层映射,所使用的权重矩阵。即层数为 [ k , k + 1 ] [k,k+1] [k,k+1]。该式子中,j:表示第 k+1层第 j个神经元, i:表示第 k层第 i个神经元。

对上述模型,激活单元和输出分别表达为:

在这里插入图片描述
\small x x x, Θ \Theta Θ , a a a 分别用矩阵表示得到前馈神经网络从输入变量获得输出结果的数学表达式:

在这里插入图片描述
这样从左到右的算法称为前向传播算法( FORWARD PROPAGATION ))

可以理解神经网络就是,它通过大量的隐藏层网络将输入向量进行一步又一步的抽象(加权求和+非线性变换),生成能够更加容易解释模型的复杂新特征,最后将这些强大的新特征传入输出层获得预测结果。单层神经元(无隐藏层)无法表示逻辑同或运算,但是若加上一个隐藏层结构就可以轻松表示出逻辑同或运算!

1.4 多元分类

对于一张输入图片,需要识别其属于行人、轿车、摩托车或者卡车中的一个类型,就是一个多类分类的问题。神经网络模型也可以处理多分类任务。与二分类不同的是,多分类模型最后的输出层将是一个K维的向量,K表示类别数。用神经网络表示如下:

在这里插入图片描述
而用0与1的组合成的向量代替1,2,3,4时,
在这里插入图片描述

具体在程序中,可以通过每个输出值取最大值来判断属于哪一类。

1.5 循环神经网络与对称连接网络

  • 循环神经网络:

循环网络在他们的连接图中定向了循环,这意味着你可以按照箭头回到你开始的地方。他们可以有复杂的动态,使其很难训练。他们更具有生物真实性。循环神经网路,即一个序列当前的输出与前面的输出也有关。具体的表现形式为网络会对前面的信息进行记忆并应用于当前输出的计算中,即隐藏层之间的节点不再无连接而是有连接的,并且隐藏层的输入不仅包括输入层的输出还包括上一时刻隐藏层的输出。

  • 对称连接网络:

对称连接网络有点像循环网络,但是单元之间的连接是对称的(它们在两个方向上权重相同)。比起循环网络,对称连接网络更容易分析。这个网络中有更多的限制,因为它们遵守能量函数定律。没有隐藏单元的对称连接网络被称为“Hopfield 网络”。有隐藏单元的对称连接的网络被称为玻尔兹曼机。

(二)神经网络模型实现

首先需要确定其代价函数,然后对参数进行估计,最后确定模型用于预测。

2.1 代价函数

在分类问题,我们知道使用交叉熵误差函数而不是平方和误差函数,会使得训练速度更快,同时也提升了泛化能力。对于二元分类问题来说,神经网络可以使用单一的logistics神经元作为输出,同时也可以使用两个softmax神经元作为输出。

设神经网络的输出单元有 K个,而网络的第 k个神经元的输出我们用 y k ( x , θ ) y_{k}(x,\theta ) yk(x,θ) 表示,同时其目标用 t k t_{k} tk表示,基于两种不同的考量角度,代价函数由下面给出:

  1. 有交集的多分类问题

对于此类问题,可以将多分类看成多个相互独立的二元分类问题,每个输出神经元都有两种取值 ( t = 0 , 1 ),并且输出神经元之间相互独立,故给定输入向量时,目标向量的条件概率分布为:

在这里插入图片描述
利用似然函数的负对数得误差函数:

在这里插入图片描述

  1. 互斥的多分类问题

对于该问题,我们通常用 “ 1 − o f − K ” “1-of-K” 1ofK 的表示方式来表示类别,从而网络的输出可以表示为 y k ( x , θ ) = P ( t k = 1 ∣ x ) y_{k}(x,\theta )=P(t_{k}=1|x) yk(x,θ)=P(tk=1x) ,因此误差函数为:
在这里插入图片描述
通常使用Softmax函数计算网络输出 :

在这里插入图片描述
y k ​ ( x ( i ) ) y_{k} ​(x^{(i)}) yk(x(i)),表示第 i个样本第 k个输出单元的输出值,是一个概率值。对于正则化项,依然采用 L2正则项,将所有参数(不包含bias项的参数)的平方和相加,也就是不把 i=0时的参数加进来。

2.2 反向传播

一般的训练算法可以分为两个阶段:

  1. 求解代价函数关于权值(参数)的导数。(BP)

  2. 用得到的导数进一步计算权值的调整量。(梯度下降等优化算法)

反向传播(BP)算法主要应用第一阶段,非常高效的计算这些导数。

2.2.1 数学推导

假设网络中的每个隐含单元或输入单元都有相同的激活函数 h ( ⋅ ) h(\cdot) h()
正则化的代价函数公式:

在这里插入图片描述记,k:输出单元个数
L:神经网络总层数
s l s_{l} sl :第L层的单元数(不包括偏置单元)
θ ( l ) \theta ^{(l)} θ(l) :表示第L层边上的权重即参数

而目标是找出 θ \theta θ,使得 J ( θ ) J(\theta) J(θ) 的值最小。

于是求偏导 ∂ ∂ θ j i ( l ) ​ J ( θ ) \frac{∂ }{∂θji^{(l)}}​J(θ) θji(l)J(θ)(其中 θ j i ( l ) ∈ R \theta ^{(l)}_{ji}∈R θji(l)R ), J ( θ ) J(\theta) J(θ) 可以由公式直接给出,关键就是如何计算其偏导。

推导出代价函数导数的计算公式:

在这里插入图片描述
首先考虑一个简单的线性模型,其中输出 y k y_{k} yk 是输入变量 x i x_{i} xi的线性组合: y k ​ = ∑ i θ k i ​ x i yk​= \sum_{i}^{}\theta _{ki​}xi yk=iθkixi

给定一个特定的输入模式 n ( x , t ) n(x, t) n(x,t),则其代价函数为:

E n ​ = 1 2 ​ ∑ k ​ ( y n k ​ − t n k ​ ) 2 En​=\frac{1}{2}​\sum_{k}^{}​(y_{nk}​−t_{nk}​)^{2} En=21k(ynktnk)2

则这个代价函数关于参数的梯度为: ∂ E n ∂ θ j i = ( y n k − t n k ) x n i \frac{∂ E n}{∂ θ_{j i } } = ( y_{n k} − t_{n k} ) x _{n i } θjiEn=(ynktnk)xni

此时代价函数的梯度可以表示为与链接 θ j i \theta _{ji} θji的输出端相关联"误差信号"和与链接输入端相关联的变量 x n i x_{ni} xni的乘积。

接下来计算神经网络中代价函数关于参数的梯度。首先,因为代价函数中只有加权求和项 z j z_{j} zj​与参数 θ j i \theta_{ji} θji,故可以通过链式求导法则得到:
​ ∂ E n ∂ θ j i ​ ​ = ∂ E n ∂ z j ( l ) ​ ∂ z j ( l ) ∂ θ j i ​ ​ = ​ ∂ E n ∂ z j ( l ) a i ( l − 1 ) \frac{​∂E_{n}}{∂θ_{ji}​​}=\frac{∂E_{n}}{∂z_{j}^{(l)}}​ \frac{∂z_{j}^{(l)}}{∂θ_{ji}​​}=\frac{​∂E_{n}}{∂z_{j}^{(l)}}a_{i}^{(l−1)} θjiEn=zj(l)Enθjizj(l)=zj(l)Enai(l1)

引入新的符号: δ j = ​ ∂ E n ∂ z j δ_{j}= \frac{​∂E_{n}}{∂z_{j}} δj=zjEn,用其来表示与链接 θ j i \theta_{ji} θji的输出端相关联"误差(cost)信号",此时代价函数关于参数的梯度可以写成:
​ ∂ E n ∂ θ j i ​ ​ = ​ ∂ E n ∂ z j ( l ) a i ( l − 1 ) = δ j ( i ) ⋅ a i ( l − 1 ) ​ \frac{​∂E_{n}}{∂θ_{ji}​​}=\frac{​∂E_{n}}{∂z_{j}^{(l)}}a_{i}^{(l−1)}=δ_{j}^{(i)}⋅a_{i}^{(l−1)}​ θjiEn=zj(l)Enai(l1)=δj(i)ai(l1)

这个式子得出结论:要求的导数 = 权值 θ j i \theta_{ji} θji输出端单元的误差项 δ j ( i ) \delta _{j}^{(i)} δj(i)​ * 权值 θ j i \theta_{ji} θji​输入端单元的激活值 a i ( l − 1 ) a_{i}^{(l-1)} ai(l1)​。因为每个结点的激活值在前馈阶段已经得出,因此,为了计算导数,只需要计算网络中每个隐藏层结点和输出结点的"误差(cost)信号"即可。

隐藏层结点和输出结点的"误差(cost)信号"计算:

对于输出结点来说,第k个结点的误差等于该结点的输出值与目标值之间的差:

输出结点(线性激活函数)误差: δ k ​ = y k ​ − t k ​ δ_{k}​=y_{k​}−t_{k}​ δk=yktk

计算隐藏层结点的误差值 δ \delta δ,再次使用链式法则:

在这里插入图片描述
可见, l l l层第 j个结点的误差取决于当前结点的激活值、 l + 1 l+1 l+1 层结点的误差、以及 l + 1 l+1 l+1 层结点于当前结点的链接权值。

这种从输出到输入推导误差的方式叫做误差的反向传播。
上述得到的导数只是对于单个样本而言的,因为开始时设定了训练样本只有一个 (x,t);若使用多个训练样本,可以通过加和的形式求的导数: ∂ E n ∂ θ j i = ∑ n ∂ E n ∂ θ j i \frac{\partial E_{n}}{\partial \theta _{ji}} = \sum_{n}^{ }\frac{\partial E_{n}}{\partial \theta _{ji}} θjiEn=nθjiEn

(三)神经网络的python实现

3.1 神经网络

根据sigmoid 函数以及其求导得到对应的python代码:

import numpy as np

def tanh(x):#双曲函数
    return np.tanh(x)

def tanh_deriv(x):
    """tanh的导数"""
    return 1.0 - np.tanh(x) * np.tanh(x)

def logistic(x):
    return 1.0 / (1 + np.exp(-x))

def logistic_deriv(x):
    """逻辑函数的导数"""
    fx = logistic(x)
    return fx * (1 - fx)

神经网络的类结构:

class NeuralNetwork(object):
    def __init__(self, layers, activation='tanh'):
        pass
    def fit(self, X, Y, learning_rate=0.2, epochs=10000):
        pass
    def predict(self, x);
        pass

确定神经网络的层数,每层的个数,从而确定单元间的权重规格和单元的偏向:

def __init__(self, layers, activation='logistic'):
    """
    :param layers: 层数,如[4, 3, 2] 表示两层len(list)-1,(因为第一层是输入层,有4个单元),
    第一层有3个单元,第二层有2个单元
    :param activation:
    """
    if activation == 'tanh':
        self.activation = tanh
        self.activation_deriv = tanh_deriv
    elif activation == 'logistic':
        self.activation = logistic
        self.activation_deriv = logistic_deriv

    # 初始化随机权重
    self.weights = []
    for i in range(len(layers) - 1):
        tmp = (np.random.random([layers[i], layers[i + 1]]) * 2 - 1) * 0.25
        self.weights.append(tmp)

    # 偏向随机初始化
    self.bias = []
    for i in range(1, len(layers)):
        self.bias.append((np.random.random(layers[i]) * 2 - 1) * 0.25)

在神经网络的训练中,需要先设定一个训练的终止条件,即达到预设一定的循环次数就停止训练:

def fit(self, X, y, learning_rate=0.2, epochs=10000):
    X = np.atleast_2d(X)
    y = np.array(y)
    # 随即梯度
    for k in range(epochs):
        i = np.random.randint(X.shape[0])
        a = [X[i]]   # 随即取某一条实例
        for j in range(len(self.weights)):
            a.append(self.activation(np.dot(a[j], self.weights[j]) + self.bias[j] ))
        errors = y[i] - a[-1]
        deltas = [errors * self.activation_deriv(a[-1]) ,]  # 输出层的误差
        # 反向传播,对于隐藏层的误差
        for j in range(len(a) - 2, 0, -1):
            tmp = np.dot(deltas[-1], self.weights[j].T) * self.activation_deriv(a[j])
            deltas.append(tmp)
        deltas.reverse()

每次训练是从样本中随机挑选一个实例进行训练,将这个实例的预测结果和真实结果进行对比,再进行反向传播得到各层的误差,然后再更新权重和偏向。

预测:

#将测试实例从输入层传入,通过正向传播,最后返回输出层的值
def predict(self, row):
    a = np.array(row) # 确保是 ndarray 对象
    for i in range(len(self.weights)):
        a = self.activation(np.dot(a, self.weights[i]) + self.bias[i])
    return a

3.2 手写字符识别

构造神经网络,并载入数据集:

nn = NeuralNetwork(layers=[64, 100, 10])
from sklearn import datasets
digits = datasets.load_digits()
X = digits.data
y = digits.target

数据集来自 sklearn ,其中由1797个图像组成。神经网络的输入层将有 64 个输入单元,分类结果是 0~9 ,因此输出层有10个单元。

拆分成训练集与数据集,离散化分类结果:

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelBinarizer

# 拆分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y)

# 分类结果离散化
labels_train = LabelBinarizer().fit_transform(y_train)
labels_test = LabelBinarizer().fit_transform(y_test)

训练:

nn.fit(X_train, labels_train)
from sklearn.metrics import confusion_matrix, classification_report
# 收集测试结果
predictions = []
for i in range(X_test.shape[0]):
	o = nn.predict(X_test[i] )
	predictions.append(np.argmax(o))

# 打印对比结果
print (confusion_matrix(y_test, predictions) )
print (classification_report(y_test, predictions))

实验效果:

当预测值为0,真实值也为0,那么就在 [0][0] 计数 1。因此这个对角线计数越大表示预测越准确:
在这里插入图片描述
分类结果:
在这里插入图片描述

3.3 用神经网络实现手写字符识别

#载入所需要的包
import matplotlib.pyplot as plt
import numpy as np
import scipy.io as scio  #读取.mat文件

载入可视化随机100个数据:

input_layer_size=400 #输入层的单元数  原始输入特征数 20*20=400
hidden_layer_size=25 #隐藏层 25个神经元
num_labels=10    # 10个标签 数字0对应类别10  数字1-9对应类别1-9
    
def display_data(x):
    (m, n) = x.shape   #100*400
 
    example_width = np.round(np.sqrt(n)).astype(int) #每个样本显示宽度 round()四舍五入到个位 并转换为int
    example_height = (n / example_width).astype(int) #每个样本显示高度  并转换为int
 
    #设置显示格式 100个样本 分10行 10列显示
    display_rows = np.floor(np.sqrt(m)).astype(int)
    display_cols = np.ceil(m / display_rows).astype(int)
 
    # 待显示的每张图片之间的间隔
    pad = 1
 
    # 显示的布局矩阵 初始化值为-1
    display_array = - np.ones((pad + display_rows * (example_height + pad),
                              pad + display_rows * (example_height + pad)))
 
    # Copy each example into a patch on the display array
    curr_ex = 0
    for j in range(display_rows):
        for i in range(display_cols):
            if curr_ex > m:
                break
 
            # Copy the patch
            # Get the max value of the patch
            max_val = np.max(np.abs(x[curr_ex]))
            display_array[pad + j * (example_height + pad) + np.arange(example_height),
                          pad + i * (example_width + pad) + np.arange(example_width)[:, np.newaxis]] = \
                          x[curr_ex].reshape((example_height, example_width)) / max_val
            curr_ex += 1
 
        if curr_ex > m:
            break
 
    # 显示图片
    plt.figure()
    plt.imshow(display_array, cmap='gray', extent=[-1, 1, -1, 1])
    plt.axis('off')
    

print('>>Loading and Visualizing Data ')
 
data = scio.loadmat('ex3data1.mat') #读取数据
X = data['X']  #获取输入特征矩阵 5000*400
y = data['y'].flatten()  #获取5000个样本的标签 用flatten()函数 将5000*1的2维数组 转换成包含5000个元素的一维数组
m = y.size  #样本数 5000
 
# 随机选100个样本 可视化
rand_indices = np.random.permutation(range(m))
selected = X[rand_indices[0:100], :]
 
display_data(selected)

效果:

在这里插入图片描述

神经网络参数:

data=scio.loadmat('ex3weights.mat')#读取参数数据
#本实验神经网络结构只有3层 输入层,隐藏层 输出层
theta1 = data['Theta1'] #输入层和隐藏层之间的参数矩阵
theta2 = data['Theta2'] #隐藏层和输出层之间的参数矩阵

经网络的前向传播,实现预测过程:

#sigmoid函数
def sigmoid(z):
    return 1/(1+np.exp(-z))

def predict(theta1,theta2,x):
    #theta1:25*401 输入层多一个偏置项
    #theta2:10*26  隐藏层多一个偏置项
    m=x.shape[0]#样本数
    num_labels=theta2.shape[0]#类别数
    
    x=np.c_[np.ones(m),x] #增加一列1   x:5000*401
    p=np.zeros(m)
    z1=x.dot(theta1.T)#z1:5000*25
    a1=sigmoid(z1) #a1:5000*25
    a1=np.c_[np.ones(m),a1]#增加一列1 a1:5000*26
    z2=a1.dot(theta2.T)#z2:5000*10
    a2=sigmoid(z2)#a2:5000*10
    
    p=np.argmax(a2,axis=1)#输出层的10个单元 第一个对应数字1...第十个对应数字0    
    p+=1 #最大位置+1 即为预测的标签    
    return p
    
pred = predict(theta1, theta2, X) 
print('>>Training set accuracy: {}'.format(np.mean(pred == y)*100))

结果:

Training set accuracry:97.52

3.4 拓展:改变代价函数

正则化是加在cost上的,梯度的正则化是cost函数的正则化的导数。
去掉正则化后过拟合,侧精度值肯定是很高的。本次的正则化按上一次的乘上0.01,不然正则化过头了,精度太低。

 
#正则化那个式子是人为设置的,感觉想怎么设置就怎么设置?
#去掉正则化后过拟合,侧精度值肯定是很高的。本次的正则化按上一次的乘上0.01,不然正则化过头了,精度太低。

def cost(theta, X, y):
    a1, z2, a2, z3, h = feed_forward(theta, X)  
    J=(y-h.T)**2
    return J.sum()/len(X)/2

def regularized_cost(theta, X, y, l=1):
    t1, t2 = load_weight('ex4weights.mat')
    reg = np.sum(t1[:,1:] ** 2) + np.sum(t2[:,1:] ** 2)   #正则化的公式在网站上
    return l / (2 * len(X)) * reg*0.01 + cost(theta, X, y)



    
def gradient(theta, X, y):  #不加l=1的话那个优化参数用不了,那个是要求有四个参数。那个的具体参数用法哥不知道。
    t1, t2 = deserialize(theta)  #这里debug了一天,当时忘写了。每次都是要更新t1和t2的,忘了写导致优化速度很快,即少了更新这部
    a1, z2, a2, z3, h = feed_forward(theta, X)
    d3 = (h.T - y)*sigmoid_gradient(z3.T)  #(5000, 10)  #dn是指第n层的误差
    d2 = np.dot(d3,t2[:,1:] )* sigmoid_gradient(z2.T)  #(5000,25)
    D3=np.dot(a2,d3).T  # (10, 26)  #D3是指代价函数关于传到第3层的权重的偏导数/改变率。要不要转置,变成权重的维度一样就行
    D2=np.dot(a1,d2).T  # (25, 401)
    D = (1 / len(X)) * serialize(D2, D3)  # (10285,)
    return D
    
def regularized_gradient(theta, X, y, l=1):
    """不惩罚偏置单元的参数"""
    a1, z2, a2, z3, h = feed_forward(theta, X)
    D2, D3 = deserialize(gradient(theta, X, y))
    t1[:,0] = 0  #即把偏置单元的参数变成0
    t2[:,0] = 0
    reg_D2 = D2 + (l / len(X)) * t1*0.01
    reg_D3 = D3 + (l / len(X)) * t2*0.01
    return serialize(reg_D2, reg_D3)

    
    
def nn_training(X, y):
    init_theta = random_init(10285)  # 25*401 + 10*26
    res = opt.minimize(fun=regularized_cost,
                       x0=init_theta,
                       args=(X, y, 1),
                       method='TNC',
                       jac=regularized_gradient,
                       options={'maxiter': 400})
    return res

    
    
res = nn_training(X, y)

def accuracy(theta, X, y):
    _, _, _, _, h = feed_forward(res.x, X)
    y_pred = np.argmax(h.T, axis=1) + 1
    print(classification_report(y, y_pred))

accuracy(res.x, X, raw_y)
  • 1
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值