-
安装英伟达显卡驱动,去英伟达官网下载官方程序,即安装GeForce Experience,可以自动更新到最新版本的驱动
-
在anaconda power shell prompt 中输入
nvidia-smi,查看可以支持的最高版本CUDA
-
在tensorflow官网可以查看tensorflow, python, cuDNN, CUDA的版本对应关系,其中编译器和构建工具,安装较新版本的Visual Studio即可满足。
-
在Pytorch官网可查看需要的CUDA版本。
-
在英伟达官网,先安装CUDA,再安装cuDNN,安装cuDNN时网站会说明对应什么版本的CUDA。安装CUDA时主要,win10和win11系统不一样。所以正确步骤是:先看cuDNN支持哪些较新版本的CUDA,去下载那些CUDA。
-
卸载CUDA:
- 卸载图中内容,其实就是把NVIDIACUDA开头的全部卸载
- 卸载完后,用腾讯电脑管家清理注册表
-
安装CUDA:选择自定义安装,Visual Studio intergration可装可不装,一切要安装版本低于等于当前版本的,都不安装。
- 安装的目录:手动创建文件夹。为D:\Programs\NVIDIACUDA\NVIDIA GPU Computing Toolkit\CUDA\v11.5
- 和D:\Programs\NVIDIACUDA\NVIDIA Corporation\CUDA Samples\v11.5
- 参考https://blog.csdn.net/m0_37605642/article/details/98854753
-
cuDNN:选择对应版本,下载后解压缩,把文件夹下的 bin, include, lib 的 x64 里面的文件分别复制到D:\Programs\NVIDIACUDA\NVIDIA GPU Computing Toolkit\CUDA\v11.5下的对应文件夹内
-
添加环境变量:右键计算机属性,高级系统设置,环境变量
- 前两个应该已经存在,添加最后一个即可。
- D:\Programs\NVIDIACUDA\NVIDIA GPU Computing Toolkit\CUDA\v11.5\bin
- D:\Programs\NVIDIACUDA\NVIDIA GPU Computing Toolkit\CUDA\v11.5\libnvvp
- D:\Programs\NVIDIACUDA\NVIDIA GPU Computing Toolkit\CUDA\v11.5\lib\x64
-
在jupyter 里面 import tensorflow as tf 可能还会有报错,例如
cudart64_110 not found 等等。在D:\Programs\NVIDIACUDA\NVIDIA GPU Computing Toolkit\CUDA\v11.5中搜索找不到的文件,如搜索 cudart64_110,然后复制,粘贴到 C: \Windows\System32下面即可 。 -
后续配置环境的一些列操作
-
tensorflow2.6.0和Keras有冲突,(好像自带安装了一个2.8的Keras),所以在安装了tensorflow2.6.0的环境下pip install keras==2.6.0
-
网上说CUDA15对应的是Visual Studio 2019,所以把Visual Studio 2022卸载,安装2019,安装的时候要勾选“使用C++的桌面开发”,“python开发”,以及“使用C++的桌面开发”下面的全部windows11 SDK和windows10 SDK
- 参考https://blog.csdn.net/qq_41456316/article/details/121522097
-
安装Zlib
-
找一个地方解压文件夹,在高级系统设置->环境变量->系统变量(注意不是用户变量)->Path中,添加zlibwapi.dll的根目录(注意是根目录,不是文件)
例如:文件zlibwapi.dll在"D:\Programs\zlib\dll_x64"下,那么只需在Path中添加"D:\Programs\zlib\dll_x64"即可, 重启电脑即可(没重启前很有可能还是提示报错)原文链接:https://blog.csdn.net/qq_28048779/article/details/122146628
-
参考https://blog.csdn.net/qq_28048779/article/details/122146628
-
win11 CUDA15.2 cuDNN Tensorflow2.6.0安装
最新推荐文章于 2024-10-12 08:33:59 发布