正态分布之间的条件期望
(由搞经济学的室友提供)
问题:
假设
s
i
=
θ
+
ϵ
i
s_i=\theta+\epsilon_i
si=θ+ϵi,
θ
∼
N
(
0
,
σ
θ
2
)
,
ϵ
∼
N
(
0
,
σ
2
)
,
θ
⊥
ϵ
\theta \sim N(0,\sigma_\theta^2), \epsilon \sim N(0,\sigma^2), \theta\perp\epsilon
θ∼N(0,σθ2),ϵ∼N(0,σ2),θ⊥ϵ, 要求
E
[
θ
∣
s
]
E[\theta|s]
E[θ∣s].
结论:
E
[
θ
∣
s
]
=
σ
θ
2
σ
θ
2
+
σ
2
s
E[\theta|s]=\frac{\sigma_\theta^2}{\sigma_\theta^2+\sigma^2}s
E[θ∣s]=σθ2+σ2σθ2s
证明:
这个证明其实很简单(是指想了一晚上也没搞出来),用正态分布的条件期望证,实际上就是要找一个式子
θ
−
B
s
\theta-Bs
θ−Bs 使得
s
⊥
θ
−
B
s
s\perp\theta-Bs
s⊥θ−Bs, 也即
C
o
v
(
θ
−
B
s
,
s
)
=
C
o
v
(
θ
,
θ
+
ϵ
)
−
B
V
a
r
(
s
)
=
0
Cov(\theta-Bs,s)=Cov(\theta,\theta+\epsilon)-BVar(s)=0
Cov(θ−Bs,s)=Cov(θ,θ+ϵ)−BVar(s)=0
得到
B
=
σ
θ
2
σ
θ
2
+
σ
2
B=\frac{\sigma_\theta^2}{\sigma_\theta^2+\sigma^2}
B=σθ2+σ2σθ2
那么
θ
−
B
s
∼
N
(
0
,
(
1
−
B
)
σ
θ
2
)
\theta-Bs \sim N(0,(1-B)\sigma_\theta^2)
θ−Bs∼N(0,(1−B)σθ2)
此时将
s
s
s 作为一个已知量看待
θ
∣
s
∼
N
(
B
s
,
(
1
−
B
)
σ
θ
2
)
\theta|s\sim N(Bs,(1-B)\sigma_\theta^2)
θ∣s∼N(Bs,(1−B)σθ2)
这个是比较简单的一种形式,也是很多论文关于signaling问题中用得比较多的。如果遇到更复杂的形式,那么还是可以根据正态分布条件期望的性质来证明。
□
\Box
□
总体均值的条件期望
这个主要是在supply chain 的signaling 问题中看到的。目前找到最早的文献证明是1969年Ericson的一篇Note。(Ericson W A. A note on the posterior mean of a population mean[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1969, 31(2): 332-334.) 这篇 Note 里的证明相对来说比较general,这里证一下论文使用中相对简化了的模型。
问题:
θ
\theta
θ是一个零均值,方差为
σ
2
\sigma^2
σ2 的随机变量,有多个关于
θ
\theta
θ 的signal
s
i
s_i
si,满足 (1)unbaised:
E
[
s
i
∣
θ
]
=
θ
E[s_i|\theta]=\theta
E[si∣θ]=θ for all
i
i
i;(2)linear combination:
E
[
θ
∣
s
1
,
…
,
s
n
]
=
∑
i
∈
N
α
i
s
i
E[\theta|s_1,\dots,s_n]=\sum_{i\in N}\alpha_i s_i
E[θ∣s1,…,sn]=∑i∈Nαisi,
α
i
\alpha_i
αi 为常数系数;(3)i.i.d:
s
i
s_i
si 之间关于
θ
\theta
θ 是独立的。
结论:
E
[
θ
∣
s
i
]
=
t
i
σ
2
1
+
t
i
σ
2
s
i
E[\theta|s_i]=\frac{t_i\sigma^2}{1+t_i\sigma^2}s_i
E[θ∣si]=1+tiσ2tiσ2si
其中,signal accuracy
t
i
=
1
/
E
[
V
a
r
[
s
i
∣
θ
]
]
t_i=1/E[Var[s_i|\theta]]
ti=1/E[Var[si∣θ]]。如果所有的signal accuracy 都相同且为
t
t
t,那么还能够得到
E
[
θ
∣
s
K
]
=
t
σ
2
1
+
k
t
σ
2
∑
l
∈
K
s
i
E[\theta|s_K]=\frac{t\sigma^2}{1+k t\sigma^2}\sum_{l\in K}s_i
E[θ∣sK]=1+ktσ2tσ2l∈K∑si
s
K
≜
(
s
l
)
l
∈
K
,
∣
K
∣
=
k
s_K\triangleq(s_l)_{l\in K}, |K|=k
sK≜(sl)l∈K,∣K∣=k
证明:
E
[
θ
∣
s
i
]
=
α
i
s
i
E[\theta|s_i]=\alpha_i s_i
E[θ∣si]=αisi
又因为
E
[
θ
s
i
]
=
E
[
θ
E
[
s
i
∣
θ
]
]
=
V
a
r
(
θ
)
=
σ
2
E[\theta s_i]=E[\theta E[s_i|\theta]]=Var(\theta)=\sigma^2
E[θsi]=E[θE[si∣θ]]=Var(θ)=σ2
E
[
θ
s
i
]
=
E
[
s
i
E
[
θ
∣
s
]
]
=
α
i
V
a
r
(
s
i
)
E[\theta s_i]=E[s_iE[\theta|s]]=\alpha_i Var(s_i)
E[θsi]=E[siE[θ∣s]]=αiVar(si)
所以
α
i
=
σ
2
V
a
r
(
s
i
)
\alpha_i = \frac{\sigma^2}{Var(s_i)}
αi=Var(si)σ2
V
a
r
(
s
i
)
=
E
[
V
a
r
(
s
i
∣
θ
)
]
+
V
a
r
(
E
[
s
i
∣
θ
]
)
=
1
/
t
i
+
σ
2
Var(s_i)=E[Var(s_i|\theta)]+Var(E[s_i|\theta])=1/t_i+\sigma^2
Var(si)=E[Var(si∣θ)]+Var(E[si∣θ])=1/ti+σ2
因此
E
[
θ
∣
s
i
]
=
t
i
σ
2
1
+
t
i
σ
2
s
i
E[\theta|s_i]=\frac{t_i\sigma^2}{1+t_i\sigma^2} s_i
E[θ∣si]=1+tiσ2tiσ2si
第一个结论可以证明。然后进行第二个结论的证明,其实本质上差不多。首先
E
[
θ
∣
s
i
]
=
E
[
E
[
s
j
∣
θ
]
∣
s
i
]
=
E
[
E
[
s
j
∣
θ
,
s
i
]
∣
s
i
]
=
E
[
s
j
∣
s
i
]
E[\theta|s_i]=E[E[s_j|\theta]|s_i]=E[E[s_j|\theta,s_i]|s_i]=E[s_j|s_i]
E[θ∣si]=E[E[sj∣θ]∣si]=E[E[sj∣θ,si]∣si]=E[sj∣si]
可以知道
m
=
∑
j
∈
K
s
j
/
k
m=\sum_{j\in K} s_j/k
m=∑j∈Ksj/k 是
θ
\theta
θ 的无偏且充分统计量,因此
E
[
θ
∣
s
K
]
=
E
[
θ
∣
m
]
E[\theta|s_K]=E[\theta|m]
E[θ∣sK]=E[θ∣m]
重复上面的步骤可以得到结论。
□
\Box
□
引入特殊分布——正态分布
假设
θ
∼
N
(
μ
,
σ
2
)
\theta\sim N(\mu,\sigma^2)
θ∼N(μ,σ2),
Y
1
∣
θ
∼
N
(
θ
,
τ
2
)
,
Y
2
∣
θ
∼
N
(
θ
,
τ
2
)
Y_1|\theta\sim N(\theta,\tau^2),Y_2|\theta\sim N(\theta,\tau^2)
Y1∣θ∼N(θ,τ2),Y2∣θ∼N(θ,τ2),
Y
1
∣
θ
⊥
Y
2
∣
θ
Y_1|\theta\perp Y_2|\theta
Y1∣θ⊥Y2∣θ
Y
1
∣
Y
2
∼
N
(
Y
2
+
s
μ
1
+
s
,
s
+
2
s
+
1
τ
2
)
Y_1|Y_2\sim N(\frac{Y_2+s\mu}{1+s},\frac{s+2}{s+1}\tau^2)
Y1∣Y2∼N(1+sY2+sμ,s+1s+2τ2)
s
=
τ
2
σ
2
s=\frac{\tau^2}{\sigma^2}
s=σ2τ2
θ
∣
Y
1
∼
N
(
Y
1
+
s
μ
1
+
s
,
τ
2
1
+
s
)
\theta|Y_1\sim N(\frac{Y_1+s\mu}{1+s},\frac{\tau^2}{1+s})
θ∣Y1∼N(1+sY1+sμ,1+sτ2)
Y
i
∼
N
(
μ
,
σ
2
+
τ
2
)
Y_i\sim N(\mu,\sigma^2+\tau^2)
Yi∼N(μ,σ2+τ2)
f
(
Y
1
.
Y
2
)
=
1
2
π
τ
τ
2
+
2
σ
2
e
−
(
Y
1
−
Y
2
)
2
σ
2
2
τ
2
(
τ
2
+
2
σ
2
)
−
(
Y
1
−
μ
)
2
+
(
Y
2
−
μ
)
2
2
(
τ
2
+
2
σ
2
)
f(Y_1.Y_2) = \frac{1}{2\pi\tau\sqrt{\tau^2+2\sigma^2}}e^{-\frac{(Y_1-Y_2)^2\sigma^2}{2\tau^2(\tau^2+2\sigma^2)}-\frac{(Y_1-\mu)^2+(Y_2-\mu)^2}{2(\tau^2+2\sigma^2)}}
f(Y1.Y2)=2πττ2+2σ21e−2τ2(τ2+2σ2)(Y1−Y2)2σ2−2(τ2+2σ2)(Y1−μ)2+(Y2−μ)2
证明: 直接用正态分布的 pdf 证
存在两种不同的signal 的条件期望
和第一种差不多,但是又感觉完全不一样的证明。这是在求第一个条件期望的过程中找到的一个相关例子。问题来源
论文:Morris S, Shin H S. Social value of public information[J]. american economic review, 2002, 92(5): 1521-1534.
问题:
状态
θ
\theta
θ 来源于 an improper uniform prior over the real line,关于
θ
\theta
θ 有两种signal,
y
=
θ
+
η
y=\theta+\eta
y=θ+η
η
∼
N
(
0
,
σ
η
2
)
\eta\sim N(0,\sigma_\eta^2)
η∼N(0,ση2) 同时与
θ
\theta
θ 独立,另一个signal 是
x
i
=
θ
+
ϵ
i
x_i =\theta+\epsilon_i
xi=θ+ϵi
其中
ϵ
∼
N
(
0
,
σ
ϵ
2
)
\epsilon\sim N(0,\sigma_\epsilon^2)
ϵ∼N(0,σϵ2), 与
θ
,
η
\theta,\eta
θ,η 独立。假设
α
=
1
σ
η
2
,
β
=
1
σ
ϵ
2
\alpha=\frac{1}{\sigma_\eta^2}, \beta=\frac{1}{\sigma_\epsilon^2}
α=ση21,β=σϵ21
结论:
E
[
θ
∣
y
,
x
i
]
=
α
y
+
β
x
i
α
+
β
E[\theta|y,x_i]=\frac{\alpha y+\beta x_i}{\alpha+\beta}
E[θ∣y,xi]=α+βαy+βxi
证明:
直接用定义证
E
[
θ
∣
y
,
x
i
]
=
∫
θ
f
(
θ
∣
y
,
x
i
)
d
θ
E[\theta|y,x_i]=\int\theta f(\theta|y,x_i) d\theta
E[θ∣y,xi]=∫θf(θ∣y,xi)dθ
f
(
θ
∣
y
,
x
i
)
=
f
(
θ
)
f
(
y
∣
θ
)
f
(
x
i
∣
θ
)
∫
f
(
θ
)
f
(
y
∣
θ
)
f
(
x
i
∣
θ
)
d
θ
f(\theta|y,x_i)=\frac{f(\theta)f(y|\theta)f(x_i|\theta)}{\int f(\theta)f(y|\theta)f(x_i|\theta) d\theta}
f(θ∣y,xi)=∫f(θ)f(y∣θ)f(xi∣θ)dθf(θ)f(y∣θ)f(xi∣θ)
所以
E
[
θ
∣
y
,
x
i
]
=
∫
θ
f
(
y
∣
θ
)
f
(
x
i
∣
θ
)
d
θ
=
∫
θ
Φ
(
y
−
θ
σ
η
)
Φ
(
x
i
−
θ
σ
ϵ
)
d
θ
=
α
y
+
β
x
i
α
+
β
E[\theta|y,x_i]=\int\theta f(y|\theta)f(x_i|\theta) d\theta=\int\theta \Phi(\frac{y-\theta}{\sigma_\eta})\Phi(\frac{x_i-\theta}{\sigma_\epsilon}) d\theta=\frac{\alpha y+\beta x_i}{\alpha+\beta}
E[θ∣y,xi]=∫θf(y∣θ)f(xi∣θ)dθ=∫θΦ(σηy−θ)Φ(σϵxi−θ)dθ=α+βαy+βxi