论文中出现的各种条件期望

本文探讨了正态分布下的条件期望,包括单个正态信号的条件期望和多个信号的条件期望。通过数学证明展示了如何计算这些期望,并给出了特殊情况下信号的精确表达式。此外,还介绍了正态分布如何应用于供应链中的信号传递问题。最后,文章涉及了两种不同信号的条件期望,并给出相关证明。
摘要由CSDN通过智能技术生成

正态分布之间的条件期望

(由搞经济学的室友提供)
问题:
假设 s i = θ + ϵ i s_i=\theta+\epsilon_i si=θ+ϵi, θ ∼ N ( 0 , σ θ 2 ) , ϵ ∼ N ( 0 , σ 2 ) , θ ⊥ ϵ \theta \sim N(0,\sigma_\theta^2), \epsilon \sim N(0,\sigma^2), \theta\perp\epsilon θN(0,σθ2),ϵN(0,σ2),θϵ, 要求 E [ θ ∣ s ] E[\theta|s] E[θs].
结论:
E [ θ ∣ s ] = σ θ 2 σ θ 2 + σ 2 s E[\theta|s]=\frac{\sigma_\theta^2}{\sigma_\theta^2+\sigma^2}s E[θs]=σθ2+σ2σθ2s
证明:
这个证明其实很简单(是指想了一晚上也没搞出来),用正态分布的条件期望证,实际上就是要找一个式子 θ − B s \theta-Bs θBs 使得 s ⊥ θ − B s s\perp\theta-Bs sθBs, 也即
C o v ( θ − B s , s ) = C o v ( θ , θ + ϵ ) − B V a r ( s ) = 0 Cov(\theta-Bs,s)=Cov(\theta,\theta+\epsilon)-BVar(s)=0 Cov(θBs,s)=Cov(θ,θ+ϵ)BVar(s)=0
得到
B = σ θ 2 σ θ 2 + σ 2 B=\frac{\sigma_\theta^2}{\sigma_\theta^2+\sigma^2} B=σθ2+σ2σθ2
那么
θ − B s ∼ N ( 0 , ( 1 − B ) σ θ 2 ) \theta-Bs \sim N(0,(1-B)\sigma_\theta^2) θBsN(0,(1B)σθ2)
此时将 s s s 作为一个已知量看待
θ ∣ s ∼ N ( B s , ( 1 − B ) σ θ 2 ) \theta|s\sim N(Bs,(1-B)\sigma_\theta^2) θsN(Bs,(1B)σθ2)
这个是比较简单的一种形式,也是很多论文关于signaling问题中用得比较多的。如果遇到更复杂的形式,那么还是可以根据正态分布条件期望的性质来证明。 □ \Box

总体均值的条件期望

这个主要是在supply chain 的signaling 问题中看到的。目前找到最早的文献证明是1969年Ericson的一篇Note。(Ericson W A. A note on the posterior mean of a population mean[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1969, 31(2): 332-334.) 这篇 Note 里的证明相对来说比较general,这里证一下论文使用中相对简化了的模型。
问题:
θ \theta θ是一个零均值,方差为 σ 2 \sigma^2 σ2 的随机变量,有多个关于 θ \theta θ 的signal s i s_i si,满足 (1)unbaised: E [ s i ∣ θ ] = θ E[s_i|\theta]=\theta E[siθ]=θ for all i i i;(2)linear combination: E [ θ ∣ s 1 , … , s n ] = ∑ i ∈ N α i s i E[\theta|s_1,\dots,s_n]=\sum_{i\in N}\alpha_i s_i E[θs1,,sn]=iNαisi α i \alpha_i αi 为常数系数;(3)i.i.d: s i s_i si 之间关于 θ \theta θ 是独立的。
结论:
E [ θ ∣ s i ] = t i σ 2 1 + t i σ 2 s i E[\theta|s_i]=\frac{t_i\sigma^2}{1+t_i\sigma^2}s_i E[θsi]=1+tiσ2tiσ2si
其中,signal accuracy t i = 1 / E [ V a r [ s i ∣ θ ] ] t_i=1/E[Var[s_i|\theta]] ti=1/E[Var[siθ]]。如果所有的signal accuracy 都相同且为 t t t,那么还能够得到
E [ θ ∣ s K ] = t σ 2 1 + k t σ 2 ∑ l ∈ K s i E[\theta|s_K]=\frac{t\sigma^2}{1+k t\sigma^2}\sum_{l\in K}s_i E[θsK]=1+ktσ2tσ2lKsi
s K ≜ ( s l ) l ∈ K , ∣ K ∣ = k s_K\triangleq(s_l)_{l\in K}, |K|=k sK(sl)lK,K=k
证明:
E [ θ ∣ s i ] = α i s i E[\theta|s_i]=\alpha_i s_i E[θsi]=αisi
又因为
E [ θ s i ] = E [ θ E [ s i ∣ θ ] ] = V a r ( θ ) = σ 2 E[\theta s_i]=E[\theta E[s_i|\theta]]=Var(\theta)=\sigma^2 E[θsi]=E[θE[siθ]]=Var(θ)=σ2
E [ θ s i ] = E [ s i E [ θ ∣ s ] ] = α i V a r ( s i ) E[\theta s_i]=E[s_iE[\theta|s]]=\alpha_i Var(s_i) E[θsi]=E[siE[θs]]=αiVar(si)
所以
α i = σ 2 V a r ( s i ) \alpha_i = \frac{\sigma^2}{Var(s_i)} αi=Var(si)σ2
V a r ( s i ) = E [ V a r ( s i ∣ θ ) ] + V a r ( E [ s i ∣ θ ] ) = 1 / t i + σ 2 Var(s_i)=E[Var(s_i|\theta)]+Var(E[s_i|\theta])=1/t_i+\sigma^2 Var(si)=E[Var(siθ)]+Var(E[siθ])=1/ti+σ2
因此
E [ θ ∣ s i ] = t i σ 2 1 + t i σ 2 s i E[\theta|s_i]=\frac{t_i\sigma^2}{1+t_i\sigma^2} s_i E[θsi]=1+tiσ2tiσ2si
第一个结论可以证明。然后进行第二个结论的证明,其实本质上差不多。首先
E [ θ ∣ s i ] = E [ E [ s j ∣ θ ] ∣ s i ] = E [ E [ s j ∣ θ , s i ] ∣ s i ] = E [ s j ∣ s i ] E[\theta|s_i]=E[E[s_j|\theta]|s_i]=E[E[s_j|\theta,s_i]|s_i]=E[s_j|s_i] E[θsi]=E[E[sjθ]si]=E[E[sjθ,si]si]=E[sjsi]
可以知道 m = ∑ j ∈ K s j / k m=\sum_{j\in K} s_j/k m=jKsj/k θ \theta θ 的无偏且充分统计量,因此
E [ θ ∣ s K ] = E [ θ ∣ m ] E[\theta|s_K]=E[\theta|m] E[θsK]=E[θm]
重复上面的步骤可以得到结论。 □ \Box

引入特殊分布——正态分布

假设 θ ∼ N ( μ , σ 2 ) \theta\sim N(\mu,\sigma^2) θN(μ,σ2), Y 1 ∣ θ ∼ N ( θ , τ 2 ) , Y 2 ∣ θ ∼ N ( θ , τ 2 ) Y_1|\theta\sim N(\theta,\tau^2),Y_2|\theta\sim N(\theta,\tau^2) Y1θN(θ,τ2),Y2θN(θ,τ2), Y 1 ∣ θ ⊥ Y 2 ∣ θ Y_1|\theta\perp Y_2|\theta Y1θY2θ
Y 1 ∣ Y 2 ∼ N ( Y 2 + s μ 1 + s , s + 2 s + 1 τ 2 ) Y_1|Y_2\sim N(\frac{Y_2+s\mu}{1+s},\frac{s+2}{s+1}\tau^2) Y1Y2N(1+sY2+sμ,s+1s+2τ2)
s = τ 2 σ 2 s=\frac{\tau^2}{\sigma^2} s=σ2τ2
θ ∣ Y 1 ∼ N ( Y 1 + s μ 1 + s , τ 2 1 + s ) \theta|Y_1\sim N(\frac{Y_1+s\mu}{1+s},\frac{\tau^2}{1+s}) θY1N(1+sY1+sμ,1+sτ2)
Y i ∼ N ( μ , σ 2 + τ 2 ) Y_i\sim N(\mu,\sigma^2+\tau^2) YiN(μ,σ2+τ2)
f ( Y 1 . Y 2 ) = 1 2 π τ τ 2 + 2 σ 2 e − ( Y 1 − Y 2 ) 2 σ 2 2 τ 2 ( τ 2 + 2 σ 2 ) − ( Y 1 − μ ) 2 + ( Y 2 − μ ) 2 2 ( τ 2 + 2 σ 2 ) f(Y_1.Y_2) = \frac{1}{2\pi\tau\sqrt{\tau^2+2\sigma^2}}e^{-\frac{(Y_1-Y_2)^2\sigma^2}{2\tau^2(\tau^2+2\sigma^2)}-\frac{(Y_1-\mu)^2+(Y_2-\mu)^2}{2(\tau^2+2\sigma^2)}} f(Y1.Y2)=2πττ2+2σ2 1e2τ2(τ2+2σ2)(Y1Y2)2σ22(τ2+2σ2)(Y1μ)2+(Y2μ)2
证明: 直接用正态分布的 pdf 证

存在两种不同的signal 的条件期望

和第一种差不多,但是又感觉完全不一样的证明。这是在求第一个条件期望的过程中找到的一个相关例子。问题来源
论文:Morris S, Shin H S. Social value of public information[J]. american economic review, 2002, 92(5): 1521-1534.
问题:
状态 θ \theta θ 来源于 an improper uniform prior over the real line,关于 θ \theta θ 有两种signal,
y = θ + η y=\theta+\eta y=θ+η
η ∼ N ( 0 , σ η 2 ) \eta\sim N(0,\sigma_\eta^2) ηN(0,ση2) 同时与 θ \theta θ 独立,另一个signal 是
x i = θ + ϵ i x_i =\theta+\epsilon_i xi=θ+ϵi
其中 ϵ ∼ N ( 0 , σ ϵ 2 ) \epsilon\sim N(0,\sigma_\epsilon^2) ϵN(0,σϵ2), 与 θ , η \theta,\eta θ,η 独立。假设 α = 1 σ η 2 , β = 1 σ ϵ 2 \alpha=\frac{1}{\sigma_\eta^2}, \beta=\frac{1}{\sigma_\epsilon^2} α=ση21,β=σϵ21
结论:
E [ θ ∣ y , x i ] = α y + β x i α + β E[\theta|y,x_i]=\frac{\alpha y+\beta x_i}{\alpha+\beta} E[θy,xi]=α+βαy+βxi
证明:
直接用定义证
E [ θ ∣ y , x i ] = ∫ θ f ( θ ∣ y , x i ) d θ E[\theta|y,x_i]=\int\theta f(\theta|y,x_i) d\theta E[θy,xi]=θf(θy,xi)dθ
f ( θ ∣ y , x i ) = f ( θ ) f ( y ∣ θ ) f ( x i ∣ θ ) ∫ f ( θ ) f ( y ∣ θ ) f ( x i ∣ θ ) d θ f(\theta|y,x_i)=\frac{f(\theta)f(y|\theta)f(x_i|\theta)}{\int f(\theta)f(y|\theta)f(x_i|\theta) d\theta} f(θy,xi)=f(θ)f(yθ)f(xiθ)dθf(θ)f(yθ)f(xiθ)
所以
E [ θ ∣ y , x i ] = ∫ θ f ( y ∣ θ ) f ( x i ∣ θ ) d θ = ∫ θ Φ ( y − θ σ η ) Φ ( x i − θ σ ϵ ) d θ = α y + β x i α + β E[\theta|y,x_i]=\int\theta f(y|\theta)f(x_i|\theta) d\theta=\int\theta \Phi(\frac{y-\theta}{\sigma_\eta})\Phi(\frac{x_i-\theta}{\sigma_\epsilon}) d\theta=\frac{\alpha y+\beta x_i}{\alpha+\beta} E[θy,xi]=θf(yθ)f(xiθ)dθ=θΦ(σηyθ)Φ(σϵxiθ)dθ=α+βαy+βxi
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值