【数值笔试二】条件期望、全期望、重复独立试验

——————————————————————————————————————————————————————————
条件期望公式:
E ( X ∣ Y = y ) = ∑ x x p ( X = x ∣ Y = y ) \begin{align}E\left ( X|Y=y \right ) &= \color{blue} \sum_{x}^{} xp\left ( X=x|Y=y \right ) \\ \end{align} E(XY=y)=xxp(X=xY=y)
p ( X = x ∣ Y = y ) p\left ( X=x|Y=y \right ) p(X=xY=y)是二维随机变量联合分布的条件概率

全期望公式:
E ( X ) = E ( E ( X ∣ Y ) ) = ∑ y E ( X ∣ Y = y ) p ( Y = y ) \begin{align} E\left ( X \right ) &= E\left ( E\left ( X|Y \right ) \right ) \\ &={\color{blue} \sum_{y}^{} E\left ( X|Y=y \right ) p\left ( Y=y \right ) } \end{align} E(X)=E(E(XY))=yE(XY=y)p(Y=y)
E ( X ∣ Y = y ) E\left ( X|Y=y \right ) E(XY=y)是条件期望
全期望公式与全概率公式相似,通过将引入随机变量Y的样本空间划分成不同的子空间,然后计算每个子空间Yi对应的X的条件数学期望,X的总期望就是X的条件期望的加权平均。
——————————————————————————————————————————————————————————
条件期望和全期望图解:
原图链接:如何更好的理解双期望(全期望)定理

注意这里的 p i j p_{ij} pij是条件概率,代入的那个步骤是全概率公式


——————————————————————————————————————————————————————————
条件期望和全期望举例:
原文链接:通俗理解条件概率、条件期望、条件方差
一个年级有两个班,分别是A班和B班,A班有3人,三人的分数分别为 x 11 x_{11} x11 x 12 x_{12} x12 x 13 x_{13} x13,B班有4人,四人的分数分别为 x 21 x_{21} x21 x 22 x_{22} x22 x 23 x_{23} x23 x 24 x_{24} x24。那么:

期望:
①A班的班级平均分为 x ‾ A = x 11 + x 12 + x 13 3 {\overline{x} _{{\tiny A}}} =\frac{x_{11} +x_{12}+ x_{13} }{3} xA=3x11+x12+x13 ,这是A班的条件期望 E(分数,班级=A班)。

②B班的班级平均分为 x ‾ B = x 21 + x 22 + x 23 + x 24 4 {\overline{x}_{{\tiny B} }} =\frac{x_{21} +x_{22}+ x_{23}+ x_{24}}{4} xB=4x21+x22+x23+x24,这是B班的条件期望 E(分数,班级=B班)。

③年级总的平均分为 x ‾ = x 11 + x 12 + x 13 + x 21 + x 22 + x 23 + x 24 7 = x 11 + x 12 + x 13 3 × 3 7 + x 21 + x 22 + x 23 + x 24 4 × 4 7 \begin{align}{\overline{x}} & = \frac{x_{11} +x_{12}+ x_{13}+x_{21} +x_{22}+ x_{23}+ x_{24}}{7} \\&=\frac{x_{11} +x_{12}+ x_{13}}{3}\times \frac{3}{7} +\frac{x_{21} +x_{22}+ x_{23}+ x_{24}}{4} \times \frac{4}{7}\end{align} x=7x11+x12+x13+x21+x22+x23+x24=3x11+x12+x13×73+4x21+x22+x23+x24×74,这是总体的期望,此处体现了加权平均的思想。也对应一句话——总体的期望是部分条件期望的期望。


——————————————————————————————————————————————————————————

题目:连续地做每次成功的概率为p的独立试验,直至有k次连续成功.求所需试验次数的期望

这个题目据说有多种解法(但是我菜菜解法一还是看了zh才会的T_T)
 
解法一(全期望公式):
其实我不太懂为什么认为这是全期望解法,因为我印象中的全期望里的关联变量Y,是有限可数个值,这里的关联变量Y是 N k − 1 N_{k-1} Nk1我实在是想象不出来怎么解释。
感觉更像是期望pd (那种蜗牛爬树), , p + ( 1 − p ) ( 1 + E ( N k ) ) ,p+\left ( 1-p \right ) \left ( 1+E(N_{k} ) \right ) ,p+(1p)(1+E(Nk))就是dp[k-1],但是蜗牛爬树这种递推式期望的数学原理我又搞不太清楚,怎么没有什么递推期望公式

 
设随机变量
N k N_{k} Nk:事件连续k次成功所需试验的次数
N k − 1 N_{k-1} Nk1:事件连续k-1次成功所需试验的次数


N k N_{k} Nk这个整体是随机变量(即常提的X),k就只是一个用来泛化的参数; N k − 1 N_{k-1} Nk1同理)

随机变量拆解:
N k = E ( N k ∣ N k − 1 ) = N k − 1 + p + ( 1 − p ) ( 1 + E ( N k ) ) \begin{align} N_{k} &=E\left ( N_{k}|N_{k-1} \right ) \\ &=\color{blue} N_{k-1} +p+\left ( 1-p \right )\left ( 1+E\left ( N_{k} \right ) \right ) \end{align} Nk=E(NkNk1)=Nk1+p+(1p)(1+E(Nk))
根据全期望公式有:
E ( N k ) = E ( E ( N k ∣ N k − 1 ) ) = E ( N k − 1 + p + ( 1 − p ) ( 1 + E ( N k ) ) ) = E ( N k − 1 ) + p + ( 1 − p ) ( 1 + E ( N k ) ) \begin{align} E\left ( N_{k} \right ) &= E\left ( E\left ( N_{k}|N_{k-1} \right ) \right ) \\ &=E\left ( N_{k-1} +p+\left ( 1-p \right )\left ( 1+E\left ( N_{k} \right ) \right ) \right ) \\ &=\color{blue} E\left ( N_{k-1} \right )+p+\left ( 1-p \right ) \left ( 1+E(N_{k} ) \right ) \end{align} E(Nk)=E(E(NkNk1))=E(Nk1+p+(1p)(1+E(Nk)))=E(Nk1)+p+(1p)(1+E(Nk))
整理解得:
E ( N k ) = 1 p E ( N k − 1 ) + 1 p \begin{align} \color{blue} E\left ( N_{k} \right ) &=\color{blue} \color{blue} \color{blue} \frac{1}{p} E(N_{k-1} ) +\frac{1}{p} \end{align} E(Nk)=p1E(Nk1)+p1
(11)式是数列的递推式(自变量是k)
(如果数列的第n项an+1与它前一项an或几项的关系可以用一个式子来表示,那么这个公式叫做这个数列的递推公式。)
根据上式,递推有:
E ( N 1 ) = 1 p E ( N 2 ) = 1 p ( 1 p ) + 1 p = 1 p 2 + 1 p E ( N 3 ) = 1 p ( 1 p 2 + 1 p ) + 1 p = 1 p 3 + 1 p 2 + 1 p \begin{align} E\left ( N_{1} \right ) &=\frac{1}{p}\\E\left ( N_{2} \right ) &=\frac{1}{p} (\frac{1}{p})+\frac{1}{p}\\ &=\frac{1}{p^{2} }+\frac{1}{p}\\E\left ( N_{3} \right ) &=\frac{1}{p} (\frac{1}{{p^{2} } } +\frac{1}{p})+\frac{1}{p}\\ &=\frac{1}{p^{3} }+\frac{1}{p^{2} }+\frac{1}{p} \end{align} E(N1)E(N2)E(N3)=p1=p1(p1)+p1=p21+p1=p1(p21+p1)+p1=p31+p21+p1
一般地,数列 E ( N k ) E\left ( N_{k} \right ) E(Nk)的通项公式为:
E ( N k ) = 1 p + 1 p 2 + ⋅ ⋅ ⋅ + 1 p k \begin{align} \color{blue} E\left ( N_{k} \right ) &=\color{blue} \frac{1}{p}+\frac{1}{p^{2} }+\cdot \cdot \cdot +\frac{1}{p^{k} } \end{align} E(Nk)=p1+p21++pk1
(17)式泛用于:重复独立试验(不单单是伯努利试验,即试验结果>=2,公式结果和程序模拟结果差不多),某事件连续k次发生。因为某事件的发生与不发生实际上就是一个事件的示性函数
书本上的:试验结果只有两种–伯努利试验–伯努利分布
我想的:试验结果大于两种–不是伯努利试验–但是研究的事件是示性(感觉我就是钻牛角尖了,不想了,好像试验的样本空间是可以根据研究目的调整的,发生与不发生就是两种试验结果了,伯努利分布就有了。不管色子可以掷6还是n面,但对于试验目的,只有我要得到的一面,和其他面两种结果。。。。)




——————————————————————————————————————————————————————————
其实一开始我在第一步就想不出来了为什么 N k N_{k} Nk一个随机变量有可列个值就等于一个期望
(没想到期望也可以是随机变量,就像样本均值也是一个随机变量,那全期望实际上也可以看成是一个普通期望公式)
我一开始想的条件期望是:
随机变量Y:第一次试验的结果(Y=0事件不发生,1事件发生)
E ( N k ) = ∑ y E ( N k ∣ Y = y ) p ( y ) = E ( N k ∣ Y = 0 ) p ( Y = 0 ) + E ( N k ∣ Y = 1 ) p ( Y = 1 ) = ( 1 + E ( N k ) ) ( 1 − p ) + ( 1 + p k − 1 ( k − 1 ) + ∑ i = 1 k − 1 p i ( i + E ( N k ) ) ) p \begin{align} E\left ( N_{k} \right ) &=\sum_{y}^{} E\left ( N_{k} |Y=y \right ) p\left ( y \right ) \\ &=E\left ( N_{k} |Y=0 \right )p\left ( Y=0 \right ) +E\left ( N_{k} |Y=1 \right )p\left ( Y=1 \right )\\ &=(1+E\left ( N_{k} \right ) )\left ( 1-p \right ) +(1+p^{k-1}(k-1)+ \sum_{i=1}^{k-1}p^{i}\left ( i+ E\left ( N_{k} \right )\right ) )p \end{align} E(Nk)=yE(NkY=y)p(y)=E(NkY=0)p(Y=0)+E(NkY=1)p(Y=1)=(1+E(Nk))(1p)+(1+pk1(k1)+i=1k1pi(i+E(Nk)))p
记得当时是从k=1一直推到k=4,结果越来越长,没有模拟验证过,不知道对不对
这种解法,当k比较小的时候还好,k比较大的时候计算量多
这可能就是我概率论的上限了,so sad

相关链接转载:
抛一枚硬币直到出现连续 n 次正面向上
抛硬币第⼀次出现连续两个正⾯的期望次数
——————————————————————————————————————————————————————————
重复试验,求停止试验时试验的期望次数

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值