(四)【矩阵论】(线性变换)线性变换的定义|线性变换的矩阵表示|零空间与值空间

【矩阵论专栏】

A 线性变换的定义

(1)定义1(线性变换)设 V ! , V 2 V_!,V_2 V!V2是同一数域 F F F上的线性空间, T T T V 1 → V 2 V_1\rightarrow V_2 V1V2的映射,若对 V 1 V_1 V1中任意向量 α , β \alpha,\beta αβ,以及数域 F F F中任意元素 k k k,有: T ( α + β ) = T α + T β T(\alpha+\beta)=T\alpha+T\beta T(α+β)=Tα+Tβ T ( k α = k T α ) T(k\alpha=kT\alpha) T(kα=kTα)
则称 T T T为线性空间 V 1 V_1 V1 V 2 V_2 V2的线性变换(或线性算子)。

例1:
在这里插入图片描述
例2:
在这里插入图片描述

例3:
在这里插入图片描述

B 线性变换的矩阵表示

T T T V n → V m V^n\rightarrow V^m VnVm的线性变换, B α = { α 1 , α 2 , . . . , α n } \Beta_\alpha=\{\alpha_1,\alpha_2,...,\alpha_n\} Bα={α1,α2,...,αn} B β = { β 1 , β 2 , . . . , β m } \Beta_\beta=\{\beta_1,\beta_2,...,\beta_m\} Bβ={β1,β2,...,βm}分别是 V n V^n Vn V m V^m Vm的基。
在这里插入图片描述
因为 T α i ∈ V m , i = 1 , 2 , . . , n . T\alpha_i\in V^m,i=1,2,..,n. TαiVm,i=1,2,..,n. T α i T\alpha_i Tαi在基 B β = { β 1 , β 2 , . . . , β m } \Beta_\beta=\{\beta_1,\beta_2,...,\beta_m\} Bβ={β1,β2,...,βm}下的坐标为: A i = [ a 1 i . . a m i ] , i = 1 , 2 , . . . , n . A_i=\begin{bmatrix}a_{1i}\\.\\.\\a_{mi}\end{bmatrix},i=1,2,...,n. Ai=a1i..ami,i=1,2,...,n.即有 T α i = B β A i T\alpha_i=\Beta_\beta A_i Tαi=BβAi,i=1,2,…,n.

T B α = { T α 1 , T α 2 , . . . , T α n } T\Beta_{\alpha}=\{T\alpha_1,T\alpha_2,...,T\alpha_n\} TBα={Tα1,Tα2,...,Tαn}

则有: T B α = { T α 1 , T α 2 , . . . , T α n } = { B β A 1 , B β A 2 , . . . , B β A n } = B β { A 1 , A 2 , . . . , A n } = B β A T\Beta_\alpha=\{T\alpha_1,T\alpha_2,...,T\alpha_n\}=\{\Beta_\beta A_1,\Beta_\beta A_2,...,\Beta_\beta A_n\}=\Beta_\beta\{A_1,A_2,...,A_n\}=\Beta_\beta A TBα={Tα1,Tα2,...,Tαn}={BβA1,BβA2,...,BβAn}=Bβ{A1,A2,...,An}=BβA

其中 A = [ A 1 , A 2 , . . . , A n ] A=[A_1,A_2,...,A_n] A=[A1,A2,...,An]

A A A:每一列对应的都是 B α 里 的 向 量 α i 做 完 线 性 变 换 T 后 , T α i 在 基 B β 下 的 坐 标 \Beta_\alpha里的向量\alpha_i做完线性变换T后,T\alpha_i在基\Beta_\beta 下的坐标 Bααi线TTαiBβ

定义2 称矩阵 A A A为线性变换 T T T在基偶 { B α , B β } \{\Beta_{\alpha},\Beta_{\beta}\} {BαBβ}下的矩阵。若 T T T V n → V n V^n\rightarrow V^n VnVn(自身)的线性变换,则取 B β = B α \Beta_{\beta}=\Beta_{\alpha} Bβ=Bα,此时 A A A是方阵,简称为 T T T在基 B α \Beta_{\alpha} Bα下的矩阵。 A = [ A 1 , A 2 , . . . , A n ] A=[A_1,A_2,...,A_n] A=[A1A2...An]
其中 A i A_i Ai T α i T\alpha_i Tαi在像空间 B β \Beta_{\beta} Bβ下的坐标。


基到基的过渡矩阵P与线性变换在基偶下的矩阵A的联系:

  • 共同点:它们的每一列都是向量的坐标。
  • 不同:过渡矩阵是另外一个基的每个向量在原来那个基下的坐标。线性变换原像空间里面那个基里的向量做完线性变换后在像空间这个基下的坐标。P是同一个空间下基之间坐标的关系。A是不同空间之间的。
    例子:
    在这里插入图片描述
    从A可以看出 T T T使得向量在 α 1 \alpha_1 α1方向扩大十倍,在其他方向不变。

例子:
在这里插入图片描述

2)中的 [ 1 , 0 , 0 ] T [1 ,0, 0]^T [1,0,0]T:取A第一列

C 零空间与值空间

(1)定义3(零空间和值空间)设 T T T V n → V m V^n\rightarrow V^m VnVm的线性变换,记 N ( T ) = { ξ ∈ V n ∣ T ξ = 0 } N(T)=\{\xi\in V^n|T\xi=0\} N(T)={ξVnTξ=0} R ( T ) = { T ξ ∈ V m ∣ ξ ∈ V n } R(T)=\{T\xi\in V^m|\xi\in V^n\} R(T)={TξVmξVn} N ( T ) N(T) N(T)为T的零空间(核)
R ( T ) R(T) R(T)为T的值空间(值域)
易知, N ( T ) N(T) N(T) V n V^n Vn的子空间; R ( T ) R(T) R(T) V m V^m Vm的子空间。


(2)定义4(零度与秩)设 T T T V n → V m V^n\rightarrow V^m VnVm的线性变换,记 n u l l ( T ) = d i m N ( T ) null(T)=dimN(T) null(T)=dimN(T) r a n k ( T ) = d i m R ( T ) rank(T)=dimR(T) rank(T)=dimR(T) n u l l ( T ) 为 null(T)为 null(T) T T T的零度,
r a n k ( T ) rank(T) rank(T) T T T的秩。


(3)定理1设 T T T V n → V m V^n\rightarrow V^m VnVm的线性变换, B α = { α 1 , α 2 , . . . , α n } \Beta_\alpha=\{\alpha_1,\alpha_2,...,\alpha_n\} Bα={α1,α2,...,αn} B β = { β 1 , β 2 , . . . , β m } \Beta_\beta=\{\beta_1,\beta_2,...,\beta_m\} Bβ={β1,β2,...,βm}分别是 V n V^n Vn V m V^m Vm的基, T T T在基偶 { B α , B β } \{\Beta_\alpha,\Beta_\beta \} {Bα,Bβ}下的矩阵为 A A A,则有: 1 ) n u l l ( T ) = d i N ( A ) = n − r a n k ( A ) 1)null(T)=diN(A)=n-rank(A) 1)null(T)=diN(A)=nrank(A) 2 ) r a n k ( T ) = d i m R ( A ) = r a n k ( A ) 2)rank(T)=dimR(A)=rank(A) 2)rank(T)=dimR(A)=rank(A) 3 ) r a n k ( T ) + n u l l ( T ) = n 3)rank(T)+null(T)=n 3)rank(T)+null(T)=n
在这里插入图片描述

例题:
在这里插入图片描述


(4)求零空间 N ( T ) N(T) N(T)与值空间 R ( T ) R(T) R(T)的基的一般方法:

T T T V n → V m V^n\rightarrow V^m VnVm的线性变换, B α = { α 1 , α 2 , . . . , α n } \Beta_\alpha=\{\alpha_1,\alpha_2,...,\alpha_n\} Bα={α1,α2,...,αn} B β = { β 1 , β 2 , . . . , β n } \Beta_\beta=\{\beta_1,\beta_2,...,\beta_n\} Bβ={β1,β2,...,βn}分别是 V n V^n Vn V m V^m Vm的基。
1)求零空间 N ( T ) N(T) N(T)的基:

  • 先求出 T T T在基偶 { B α , B β } \{\Beta_\alpha,\Beta_\beta\} {BαBβ}下的矩阵 A A A;
  • 求出齐次线性方程组 A x = 0 Ax=0 Ax=0的基础解析: x 1 , x 2 , . . . , x r x_1,x_2,...,x_r x1,x2,...,xr
  • B α x 1 , B α x 2 , . . . , B α x r \Beta_\alpha x_1,\Beta_\alpha x_2,...,\Beta_\alpha x_r Bαx1,Bαx2,...,Bαxr N ( T ) N(T) N(T)的基。

2)求值空间 R ( T ) R(T) R(T)的基:

  • 先求出基 B α \Beta_\alpha Bα中向量变换后的像 T α 1 , T α 2 , . . , T α n T\alpha_1,T\alpha_2,..,T\alpha_n Tα1,Tα2,..,Tαn的极大线性无关组即为 R ( T ) 的 基 。 R(T)的基。 R(T)

例子:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二进制人工智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值