(三)【矩阵论】(子空间)常见子空间|基扩张定理|和空间与交空间|直和

【矩阵论专栏】

A 子空间定义

<1> 定义1(子空间):设 V V V是数域 F F F上的线性空间, W W W V V V的子集,若对 W W W中的任意元素 α \alpha α, β \beta β,及数 k ∈ F k\in F kF,按 V V V中的加法和数乘有: 1 ) α + β ∈ W 1)\alpha+\beta\in W 1)α+βW 2 ) k α ∈ W 2)k\alpha\in W 2)kαW W W W也是数域 F F F上的线性空间,称 W W W V V V的线性子空间,简称子空间

注:

  • 由单个零元素组成的子集 { 0 } \{0\} {0}是线性子空间;
  • 线性空间 V V V是线性子空间。
    0 0 0 V V V是称为 V V V的平凡子空间。
  • dim{0}=1

B 常见的子空间

<1> 设 A A A是一给定的 m ∗ n m * n mn实矩阵,记 N ( A ) ≜ { x ∈ R n ∣ A x = 0 } N(A)\triangleq\{x\in \mathbb{R}^n| Ax=0\} N(A){xRnAx=0} R ( A ) ≜ { A x ∣ x ∈ R n } R(A) \triangleq\{Ax|x\in\mathbb{R}^n\} R(A){AxxRn}则称 N ( A ) N(A) N(A) R n \mathbb{R}^n Rn的子空间,称为 A A A的零空间。
R ( A ) R(A) R(A) R n \mathbb{R}^n Rn的子空间,称为A的列空间。 d i m N ( A ) = n − r a n k A = n − r dimN(A)=n-rankA=n-r dimN(A)=nrankA=nr A x = 0 Ax=0 Ax=0基础解析的个数等于 n − r n-r nr
d i m R ( A ) = r a n k A = r dimR(A)= rankA=r dimR(A)=rankA=r A X 这 个 向 量 , 可 以 看 成 A 每 一 列 的 线 性 组 合 , 所 以 A 所 有 列 的 极 大 线 性 无 关 组 就 可 以 构 成 R ( A ) 的 基 AX这个向量,可以看成A每一列的线性组合,所以A所有列的极大线性无关组就可以构成R(A)的基 AXA线A线R(A)

<2> 设 { α 1 , α 2 , . . . , α r } \{\alpha_1,\alpha_2,...,\alpha_r\} {α1,α2,...,αr}是线性空间 V V V的一向量组,记 s p a n { α 1 , α 2 , . . . , α r } = { α = ∑ i = 1 r k i α i ∣ k 1 , k 2 , . . . , k r ∈ F } span\{\alpha_1,\alpha_2,...,\alpha_r\}=\{\alpha=\sum_{i=1}^rk_i\alpha_i|k_1,k_2,...,k_r\in F\} span{α1,α2,...,αr}={α=i=1rkiαik1,k2,...,krF} s p a n { α 1 , α 2 , . . . , α r } span\{\alpha_1,\alpha_2,...,\alpha_r\} span{α1,α2,...,αr} V V V的子空间,称为由 { α 1 , α 2 , . . . , α r } \{\alpha_1,\alpha_2,...,\alpha_r\} {α1,α2,...,αr}张成的子空间。
即把 { α 1 , α 2 , . . . , α r } \{\alpha_1,\alpha_2,...,\alpha_r\} {α1,α2,...,αr}所有的线性组合形成的向量放在一起,形成的集合。解决了抽象线性空间中子集(即子空间)的描述。

注:

  • { α 1 , α 2 , . . . , α m } \{\alpha_1,\alpha_2,...,\alpha_m\} {α1,α2,...,αm}是子空间 W W W的基,则有 W = s p a n { α 1 , α 2 , . . . , α m } W=span\{\alpha_1,\alpha_2,...,\alpha_m\} W=span{α1,α2,...,αm}
  • A ∈ R m × n A\in \mathbb{R}^{m\times n} ARm×n,记 A = [ A 1 , A − 2 , . . . , A n ] A=[A_1,A-2,...,A_n] A=[A1,A2,...,An],其中 A i ∈ R m , i = 1 , 2 , . . . , n A_i\in \mathbb{R}^m,i=1,2,...,n AiRm,i=1,2,...,n.则有 R ( A ) = { A x ∣ x ∈ R n } = s p a n { A 1 , A 2 , . . . , A n } R(A)=\{Ax|x\in\mathbb{R}^n\}=span\{A_1,A_2,...,A_n\} R(A)={AxxRn}=span{A1,A2,...,An}

<3>例题:

在这里插入图片描述

C 基扩张定理

<1>定理1 设4 { α 1 , α 2 , . . . , α r } \{\alpha_1,\alpha_2,...,\alpha_r\} {α1,α2,...,αr} V n V^n Vn中一组线性无关向量,则存在 V n V^n Vn n − r n-r nr个向量 α r + 1 , α r + 2 , . . . , α n \alpha_{r+1},\alpha_{r+2},...,\alpha{n} αr+1,αr+2,...,αn,使得 { α 1 , α 2 , . . . , α r , α r + 1 , α r + 2 , . . . , α n } \{\alpha_1,\alpha_2,...,\alpha_r,\alpha_{r+1},\alpha_{r+2},...,\alpha_n\} {α1,α2,...,αr,αr+1,αr+2,...,αn}构成 V n V^n Vn的基。
在这里插入图片描述

D 和空间与交空间

<1>设 W 1 W_1 W1 W 2 W_2 W2均是线性空间 V n V^n Vn的子空间

  • W 1 ⋃ W 2 W_1\bigcup W_2 W1W2不是线性空间 V n V^n Vn的子空间。
    在这里插入图片描述

由定义1,对加法不封闭。

  • W 1 ⋂ W 2 W_1\bigcap W_2 W1W2是仍然是线性空间 V n V^n Vn的子空间。
    在这里插入图片描述

<2>定义2(和空间和交空间):设 W 1 W_1 W1 W 2 W_2 W2是线性空间 V V V的两个子空间,令 W 1 ⋂ W 2 = { α ∈ V ∣ α ∈ W 1 且 α ∈ W 2 } W_1\bigcap W_2=\{\alpha \in V | \alpha\in W_1且 \alpha\in W_2\} W1W2={αVαW1αW2} W 1 + W 2 = { α ∈ V ∣ α = α 1 + α 2 , α 1 ∈ W 1 , α 2 ∈ W 2 } W_1+W_2=\{\alpha\in V| \alpha=\alpha_1+\alpha_2, \alpha_1\in W_1,\alpha_2\in W_2\} W1+W2={αVα=α1+α2,α1W1,α2W2}
W 1 ⋂ W 2 W_1\bigcap W_2 W1W2 W 1 W_1 W1 W 2 W_2 W2的交空间。
W 1 + W 2 W_1+W_2 W1+W2 W 1 W_1 W1 W 2 W_2 W2的和空间。

注:

  • W 1 + W 2 是 V 的 子 空 间 W_1+W_2是V的子空间 W1+W2V
  • W 1 = s p a n { α 1 , . . . , α r , β 1 , . . . , β m } W_1=span\{\alpha_1,...,\alpha_r,\beta_1,...,\beta_m\} W1=span{α1,...,αr,β1,...,βm}

<3> 定理2(维数公式)设 W 1 W_1 W1 W 2 W_2 W2是线性空间 V V V的两个子空间,则有: d i m ( W 1 + W 2 ) + d i m ( W 1 ⋂ W 2 ) = d i m ( W 1 ) + d i m ( W 2 ) dim(W_1+W_2)+dim(W_1\bigcap W_2) =dim(W_1)+dim(W_2) dim(W1+W2)+dim(W1W2)=dim(W1)+dim(W2)
在这里插入图片描述

例题:
在这里插入图片描述修改: [ − 5 , 2 , 3 , 7 ] > > [ − 5 , 2 , 3 , 4 ] T [-5,2,3,7]>>[-5,2,3,4]^T [5,2,3,7]>>[5,2,3,4]T

和空间 W 1 + W 2 W_1+W_2 W1+W2中的向量一定可以分解成两个向量之和,其中一个向量属于 W 1 W_1 W1,另一个输入 W 2 W_2 W2,即 ∀ ξ ∈ W 1 + W 2 , ∃ α 1 ∈ W 1 , α 2 ∈ W 1 \forall\xi\in W_1+W_2,\exists \alpha_1\in W_1,\alpha_2\in W_1 ξW1+W2,α1W1α2W1 s . t . ξ = α 1 + α 2 s.t. \xi=\alpha_1+\alpha_2 s.t.ξ=α1+α2

例子:

E 直和

<1> 定义3(直和)设 W 1 + W 2 W_1+W_2 W1+W2中的任一向量只能唯一地分解为 W 1 W_1 W1中的一个向量与 W 2 W_2 W2中的一个向量之和,则称 W 1 + W 2 W_1+W_2 W1+W2 W 1 W_1 W1 W 2 W_2 W2的直和,记为: W 1 ⊕ W 2 W_1\oplus W_2 W1W2.

<2>定理3(直和等价条件):

  • 1) W 1 + W 2 = W 1 ⊕ W 2 W_1+W_2=W_1\oplus W_2 W1+W2=W1W2
  • 2) W 1 ⋂ W 2 = { 0 } W_1\bigcap W_2=\{0\} W1W2={0}
  • 3) d i m ( W 1 + W 2 ) = d i m ( W 1 ) + d i m ( W 2 ) dim(W_1+W_2)=dim(W_1)+dim(W_2) dim(W1+W2)=dim(W1)+dim(W2)
  • 4) 0 = α 1 + α 2 , α 1 ∈ W 1 , α 2 ∈ W 2 , 则 有 α 1 = 0 , α 2 = 0 0=\alpha_1 + \alpha_2,\alpha_1\in W_1,\alpha_2\in W_2,则有\alpha_1=0,\alpha_2=0 0=α1+α2,α1W1,α2W2,α1=0,α2=0.
    在这里插入图片描述

例题:
在这里插入图片描述

总结:子空间本身是子集,子集是有运算的,有交和并,但是并完后的空间不是线性空间(对加法不封闭),所以扩展出和空间。由于和空间分解不唯一,把分解唯一的和专门拿出来,叫做直和。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二进制人工智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值