A 子空间定义
<1> 定义1(子空间):设 V V V是数域 F F F上的线性空间, W W W是 V V V的子集,若对 W W W中的任意元素 α \alpha α, β \beta β,及数 k ∈ F k\in F k∈F,按 V V V中的加法和数乘有: 1 ) α + β ∈ W 1)\alpha+\beta\in W 1)α+β∈W 2 ) k α ∈ W 2)k\alpha\in W 2)kα∈W则 W W W也是数域 F F F上的线性空间,称 W W W为 V V V的线性子空间,简称子空间
注:
- 由单个零元素组成的子集 { 0 } \{0\} {0}是线性子空间;
- 线性空间
V
V
V是线性子空间。
0 0 0与 V V V是称为 V V V的平凡子空间。 - dim{0}=1
B 常见的子空间
<1> 设
A
A
A是一给定的
m
∗
n
m * n
m∗n实矩阵,记
N
(
A
)
≜
{
x
∈
R
n
∣
A
x
=
0
}
N(A)\triangleq\{x\in \mathbb{R}^n| Ax=0\}
N(A)≜{x∈Rn∣Ax=0}
R
(
A
)
≜
{
A
x
∣
x
∈
R
n
}
R(A) \triangleq\{Ax|x\in\mathbb{R}^n\}
R(A)≜{Ax∣x∈Rn}则称
N
(
A
)
N(A)
N(A)是
R
n
\mathbb{R}^n
Rn的子空间,称为
A
A
A的零空间。
则
R
(
A
)
R(A)
R(A)是
R
n
\mathbb{R}^n
Rn的子空间,称为A的列空间。
d
i
m
N
(
A
)
=
n
−
r
a
n
k
A
=
n
−
r
dimN(A)=n-rankA=n-r
dimN(A)=n−rankA=n−r
A
x
=
0
Ax=0
Ax=0基础解析的个数等于
n
−
r
n-r
n−r
d
i
m
R
(
A
)
=
r
a
n
k
A
=
r
dimR(A)= rankA=r
dimR(A)=rankA=r
A
X
这
个
向
量
,
可
以
看
成
A
每
一
列
的
线
性
组
合
,
所
以
A
所
有
列
的
极
大
线
性
无
关
组
就
可
以
构
成
R
(
A
)
的
基
AX这个向量,可以看成A每一列的线性组合,所以A所有列的极大线性无关组就可以构成R(A)的基
AX这个向量,可以看成A每一列的线性组合,所以A所有列的极大线性无关组就可以构成R(A)的基。
<2> 设
{
α
1
,
α
2
,
.
.
.
,
α
r
}
\{\alpha_1,\alpha_2,...,\alpha_r\}
{α1,α2,...,αr}是线性空间
V
V
V的一向量组,记
s
p
a
n
{
α
1
,
α
2
,
.
.
.
,
α
r
}
=
{
α
=
∑
i
=
1
r
k
i
α
i
∣
k
1
,
k
2
,
.
.
.
,
k
r
∈
F
}
span\{\alpha_1,\alpha_2,...,\alpha_r\}=\{\alpha=\sum_{i=1}^rk_i\alpha_i|k_1,k_2,...,k_r\in F\}
span{α1,α2,...,αr}={α=i=1∑rkiαi∣k1,k2,...,kr∈F}则
s
p
a
n
{
α
1
,
α
2
,
.
.
.
,
α
r
}
span\{\alpha_1,\alpha_2,...,\alpha_r\}
span{α1,α2,...,αr}是
V
V
V的子空间,称为由
{
α
1
,
α
2
,
.
.
.
,
α
r
}
\{\alpha_1,\alpha_2,...,\alpha_r\}
{α1,α2,...,αr}张成的子空间。
即把
{
α
1
,
α
2
,
.
.
.
,
α
r
}
\{\alpha_1,\alpha_2,...,\alpha_r\}
{α1,α2,...,αr}所有的线性组合形成的向量放在一起,形成的集合。解决了抽象线性空间中子集(即子空间)的描述。
注:
- 若 { α 1 , α 2 , . . . , α m } \{\alpha_1,\alpha_2,...,\alpha_m\} {α1,α2,...,αm}是子空间 W W W的基,则有 W = s p a n { α 1 , α 2 , . . . , α m } W=span\{\alpha_1,\alpha_2,...,\alpha_m\} W=span{α1,α2,...,αm}
- 设 A ∈ R m × n A\in \mathbb{R}^{m\times n} A∈Rm×n,记 A = [ A 1 , A − 2 , . . . , A n ] A=[A_1,A-2,...,A_n] A=[A1,A−2,...,An],其中 A i ∈ R m , i = 1 , 2 , . . . , n A_i\in \mathbb{R}^m,i=1,2,...,n Ai∈Rm,i=1,2,...,n.则有 R ( A ) = { A x ∣ x ∈ R n } = s p a n { A 1 , A 2 , . . . , A n } R(A)=\{Ax|x\in\mathbb{R}^n\}=span\{A_1,A_2,...,A_n\} R(A)={Ax∣x∈Rn}=span{A1,A2,...,An}
<3>例题:
C 基扩张定理
<1>定理1 设4
{
α
1
,
α
2
,
.
.
.
,
α
r
}
\{\alpha_1,\alpha_2,...,\alpha_r\}
{α1,α2,...,αr}是
V
n
V^n
Vn中一组线性无关向量,则存在
V
n
V^n
Vn中
n
−
r
n-r
n−r个向量
α
r
+
1
,
α
r
+
2
,
.
.
.
,
α
n
\alpha_{r+1},\alpha_{r+2},...,\alpha{n}
αr+1,αr+2,...,αn,使得
{
α
1
,
α
2
,
.
.
.
,
α
r
,
α
r
+
1
,
α
r
+
2
,
.
.
.
,
α
n
}
\{\alpha_1,\alpha_2,...,\alpha_r,\alpha_{r+1},\alpha_{r+2},...,\alpha_n\}
{α1,α2,...,αr,αr+1,αr+2,...,αn}构成
V
n
V^n
Vn的基。
D 和空间与交空间
<1>设 W 1 W_1 W1和 W 2 W_2 W2均是线性空间 V n V^n Vn的子空间
-
W
1
⋃
W
2
W_1\bigcup W_2
W1⋃W2不是线性空间
V
n
V^n
Vn的子空间。
由定义1,对加法不封闭。
-
W
1
⋂
W
2
W_1\bigcap W_2
W1⋂W2是仍然是线性空间
V
n
V^n
Vn的子空间。
<2>定义2(和空间和交空间):设
W
1
W_1
W1与
W
2
W_2
W2是线性空间
V
V
V的两个子空间,令
W
1
⋂
W
2
=
{
α
∈
V
∣
α
∈
W
1
且
α
∈
W
2
}
W_1\bigcap W_2=\{\alpha \in V | \alpha\in W_1且 \alpha\in W_2\}
W1⋂W2={α∈V∣α∈W1且α∈W2}
W
1
+
W
2
=
{
α
∈
V
∣
α
=
α
1
+
α
2
,
α
1
∈
W
1
,
α
2
∈
W
2
}
W_1+W_2=\{\alpha\in V| \alpha=\alpha_1+\alpha_2, \alpha_1\in W_1,\alpha_2\in W_2\}
W1+W2={α∈V∣α=α1+α2,α1∈W1,α2∈W2}
称
W
1
⋂
W
2
W_1\bigcap W_2
W1⋂W2为
W
1
W_1
W1与
W
2
W_2
W2的交空间。
称
W
1
+
W
2
W_1+W_2
W1+W2为
W
1
W_1
W1与
W
2
W_2
W2的和空间。
注:
- W 1 + W 2 是 V 的 子 空 间 W_1+W_2是V的子空间 W1+W2是V的子空间;
- 设 W 1 = s p a n { α 1 , . . . , α r , β 1 , . . . , β m } W_1=span\{\alpha_1,...,\alpha_r,\beta_1,...,\beta_m\} W1=span{α1,...,αr,β1,...,βm}
<3> 定理2(维数公式)设
W
1
W_1
W1与
W
2
W_2
W2是线性空间
V
V
V的两个子空间,则有:
d
i
m
(
W
1
+
W
2
)
+
d
i
m
(
W
1
⋂
W
2
)
=
d
i
m
(
W
1
)
+
d
i
m
(
W
2
)
dim(W_1+W_2)+dim(W_1\bigcap W_2) =dim(W_1)+dim(W_2)
dim(W1+W2)+dim(W1⋂W2)=dim(W1)+dim(W2)
例题:
修改:
[
−
5
,
2
,
3
,
7
]
>
>
[
−
5
,
2
,
3
,
4
]
T
[-5,2,3,7]>>[-5,2,3,4]^T
[−5,2,3,7]>>[−5,2,3,4]T
和空间 W 1 + W 2 W_1+W_2 W1+W2中的向量一定可以分解成两个向量之和,其中一个向量属于 W 1 W_1 W1,另一个输入 W 2 W_2 W2,即 ∀ ξ ∈ W 1 + W 2 , ∃ α 1 ∈ W 1 , α 2 ∈ W 1 \forall\xi\in W_1+W_2,\exists \alpha_1\in W_1,\alpha_2\in W_1 ∀ξ∈W1+W2,∃α1∈W1,α2∈W1 s . t . ξ = α 1 + α 2 s.t. \xi=\alpha_1+\alpha_2 s.t.ξ=α1+α2
例子:
E 直和
<1> 定义3(直和)设 W 1 + W 2 W_1+W_2 W1+W2中的任一向量只能唯一地分解为 W 1 W_1 W1中的一个向量与 W 2 W_2 W2中的一个向量之和,则称 W 1 + W 2 W_1+W_2 W1+W2为 W 1 W_1 W1与 W 2 W_2 W2的直和,记为: W 1 ⊕ W 2 W_1\oplus W_2 W1⊕W2.
<2>定理3(直和等价条件):
- 1) W 1 + W 2 = W 1 ⊕ W 2 W_1+W_2=W_1\oplus W_2 W1+W2=W1⊕W2
- 2) W 1 ⋂ W 2 = { 0 } W_1\bigcap W_2=\{0\} W1⋂W2={0}
- 3) d i m ( W 1 + W 2 ) = d i m ( W 1 ) + d i m ( W 2 ) dim(W_1+W_2)=dim(W_1)+dim(W_2) dim(W1+W2)=dim(W1)+dim(W2)
- 4)
0
=
α
1
+
α
2
,
α
1
∈
W
1
,
α
2
∈
W
2
,
则
有
α
1
=
0
,
α
2
=
0
0=\alpha_1 + \alpha_2,\alpha_1\in W_1,\alpha_2\in W_2,则有\alpha_1=0,\alpha_2=0
0=α1+α2,α1∈W1,α2∈W2,则有α1=0,α2=0.
例题:
总结:子空间本身是子集,子集是有运算的,有交和并,但是并完后的空间不是线性空间(对加法不封闭),所以扩展出和空间。由于和空间分解不唯一,把分解唯一的和专门拿出来,叫做直和。