文章目录
LTI系统的频域分析
1 基本信号 e j ω t e^{jωt} ejωt作用于LTI系统的响应
傅里叶分析是将任意信号分解为无穷多项不同频率的虚指数函数之和。
说明:频域分析中,基本信号的定义域为
(
–
∞
,
∞
)
(–∞,∞)
(–∞,∞),而
t
=
–
∞
t= – ∞
t=–∞总可认为系统的状态为0
,因此本章的响应指零状态响应
,常写为
y
(
t
)
y(t)
y(t)。
推导:设LTI系统的冲激响应为
h
(
t
)
h(t)
h(t),当激励是角频率
ω
ω
ω的基本信号
e
j
w
t
e^{jwt}
ejwt时,其响应
根据卷积定义,得
定义: h ( t ) h(t) h(t)的傅里叶变换,记为 H ( j w ) H(jw) H(jw),常称为系统的频率响应函数。
基本信号
e
j
w
t
e^{jwt}
ejwt作用于LTI系统的响应:
H
(
j
w
)
H(jw)
H(jw)反映了响应
y
(
t
)
y(t)
y(t)的幅度和相位。
2 一般信号 f ( t ) f(t) f(t)作用于LTI系统的响应
结论:响应的傅里叶变换等于输入信号的傅里叶变换乘系统函数 h ( t ) h(t) h(t)的傅里叶变换
3 傅里叶变换分析法
用傅里叶变换分析系统响应。
时域卷积运算用频域的乘积代替。
傅里叶变换分析法步骤:
4 傅里叶级数分析法
对周期输入信号,还可用傅里叶级数分析法。
周期信号的指数形式傅里叶级数:
f
T
(
t
)
=
∑
n
=
−
∞
∞
F
n
e
j
n
Ω
t
f_{T}(t)=\sum_{n=-\infty}^{\infty} F_{n} e^{j n \Omega t}
fT(t)=n=−∞∑∞FnejnΩt
系统零状态响应:
傅里叶级数分析法步骤:
若周期信号采用三角形式傅里叶级数表示:
设系统频率响应函数
则可推导出
5 频率响应函数
1.定义:系统零状态响应
y
(
t
)
y (t)
y(t)的傅里叶变换
Y
(
j
ω
)
Y(j\omega)
Y(jω)与激励
f
(
t
)
f(t)
f(t)的傅里叶变换
F
(
j
ω
)
F(j\omega)
F(jω)之比。即:
H
(
j
ω
)
=
Y
(
j
ω
)
F
(
j
ω
)
H(j \omega)=\frac{Y(j \omega)}{F(j \omega)}
H(jω)=F(jω)Y(jω)
H
(
j
ω
)
H(j\omega)
H(jω)一般是复函数,记为:
H
(
j
ω
)
=
∣
H
(
j
ω
)
∣
e
j
θ
(
ω
)
=
∣
Y
(
j
ω
)
∣
∣
F
(
j
ω
)
∣
e
j
[
φ
y
(
ω
)
−
φ
f
(
ω
)
]
H(j \omega)=|H(j \omega)| e^{j \theta(\omega)}=\frac{|Y(j \omega)|}{|F(j \omega)|} e^{j\left[\varphi_{y}(\omega)-\varphi_{f}(\omega)\right]}
H(jω)=∣H(jω)∣ejθ(ω)=∣F(jω)∣∣Y(jω)∣ej[φy(ω)−φf(ω)]
∣ H ( j ω ) ∣ |H(j \omega)| ∣H(jω)∣称为幅频特性(或幅频响应), 是 ω \omega ω的偶函数;
θ ( ω ) θ(\omega) θ(ω) 称为相频特性(或相频响应), 是 ω \omega ω的奇函数。
2.频率响应函数的求法
6 无失真传输
系统对于信号的作用大体可分为两类:
一类是信号的传输,一类是滤波。传输要求信号尽量不失真,而滤波则要求滤去或削弱不需要的成分,必然伴随着失真。
无失真传输的定义:
信号无失真传输是指系统的输出信号与输入信号相比,只有幅度的大小和出现时间的先后不同
,而没有波形上的变化
输入信号 f ( t ) f(t) f(t),经过无失真传输后,输出信号应为 y ( t ) = K f ( t − t d ) y(t)=K f\left(t-t_{d}\right) y(t)=Kf(t−td)
其频谱关系为
Y
(
j
ω
)
=
K
e
−
j
ω
t
d
F
(
j
ω
)
Y(j \omega)=K e^{-j \omega t_{d}} F(j \omega)
Y(jω)=Ke−jωtdF(jω)
无失真传输条件:
说明:上述是信号无失真传输的理想条件。当传输有限带宽的信号时,只要在信号占有频带范围内,系统的幅频、相频特性满足以上条件即可
。例如:
幅度在[-10,10]时幅度不失真。相位在[-5,5]时相位不失真。
A:最高频率 w = 8 w=8 w=8,幅度不失真,但相位失真
B:最高频率 w = 4 w=4 w=4,幅度不失真,但相位不失真。
C:积化和差,得到最高频率 w = 6 w=6 w=6,幅度不失真,但相位失真
D:由半角公式,得到最高频率 w = 8 w=8 w=8,幅度不失真,但相位失真
故选B
。
7 理想低通滤波器(LPF)
1 定义:具有如图所示矩形幅频特性、线性相频特性
的系统称为理想低通滤波器。
w
c
w_c
wc称为截止角频率。
理想低通滤波器的频率响应可写为:
2 冲激响应
(1)比较输入输出,可见严重失真;
原因:
δ
(
t
)
↔
1
δ(t)↔1
δ(t)↔1信号频带无限宽,理想低通滤波器
通频带是有限的,
ω
c
ω_c
ωc以上的频率成分被截止。
(2)理想低通滤波器是物理不可实现的非因果系统
原因: h ( t ) h(t) h(t)在 t < 0 t\lt 0 t<0也有值,这在现实中是不可能的
3.阶跃响应
备注:正弦积分函数见附录
上升时间
t
r
t_r
tr:输出由最小值到最大值所经历的时间。
t
r
=
2
π
ω
C
=
1
B
t_{r}=\frac{2 \pi}{\omega_{C}}=\frac{1}{B}
tr=ωC2π=B1
可见:阶跃响应的上升时间 t r t_r tr与滤波器带宽 B B B成反比。
特点:有明显失真,只要 w c < ∞ w_c<∞ wc<∞,则必有振荡,其过冲比稳态值高约9%。这一由频率截断效应引起的振荡现象称为吉布斯现象。
g max = 1 2 + 1 π Si ( π ) ≈ 1.0895 g_{\max }=\frac{1}{2}+\frac{1}{\pi} \operatorname{Si}(\pi) \approx 1.0895 gmax=21+π1Si(π)≈1.0895
8 物理可实现系统的条件
(1)时域特性:
h
(
t
)
=
0
,
t
<
0
h(t)=0, t<0
h(t)=0,t<0
也就是因果条件。
(2)频域特性:
说明:
(1)物理可实现系统时域特性表明,响应不应在激励 作用之前出现
;
(2)对于物理可实现系统,可以允许
H
(
j
ω
)
H(jω)
H(jω)特性在某些 不连续的频率点上为0
,但不允许在一个有限频带内 为0
。按此原理,理想低通、理想高通、理想带通、
理想带阻等理想滤波器都是不可实现的;
(3)佩利-维纳准则要求可实现的幅度特性其总的衰减 不能过于迅速
;
(4)佩利-维纳准则是系统物理可实现的必要条件,而
不是充分条件。
9 几种常见的实际滤波器
附录 S i ( y ) 函 数 Si(y)函数 Si(y)函数
特点:
中国大学MOOC:信号与系统 ,西安电子科技大学,郭宝龙,朱娟娟