20211108 A转置乘A是正定矩阵吗?A转置乘A是正定矩阵的充分必要条件是什么?

本文总结了矩阵A^TA的正定性特性,指出它不一定为正定但肯定是半正定。关键点包括:A的零空间不影响正定性,列满秩是A^TA正定的必要条件,以及如何通过满秩矩阵乘积得出半正定性。还介绍了半正定矩阵的性质和与正定矩阵的区别,以及关于B+δI的正定性证明。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

结论1

结论1: A T A A^TA ATA不一定是正定矩阵,但一定是半正定矩阵(即特征值一定大于等于0)。

证明:
对于任意非零 x ∈ R n x\in\mathbb{R}^n xRn,存在
x T A T A x = ( A x ) T A x ⩾ 0 x^{T}A^TAx = {(Ax)}^TAx\geqslant 0 xTATAx=(Ax)TAx0如果非零矢量 x x x处于 A A A的零空间,那么 ( A x ) T A x = 0 {(Ax)}^TAx=0 (Ax)TAx=0,否则 ( A x ) T A x > 0 {(Ax)}^TAx>0 (Ax)TAx>0,另外 A T A A^TA ATA 一定是对称的。因此 A T A A^TA ATA 不一定是正定矩阵,但一定是半正定矩阵(正定矩阵要求对于任意非零 x x x 都满足二次型大于0)。

结论2

结论2: A T A A^TA ATA是正定矩阵的充分必要条件是 A A A 满足列满秩。

证明:
如果 A A A 满足列满秩,那么 A x = 0 Ax=0 Ax=0的解只有 x = 0 x=0 x=0,也就是说对于任意非零 x ∈ R x\in\mathbb{R} xR A x ≠ 0 Ax \neq 0 Ax=0,那么 ( A x ) T A x ≠ 0 = x T A T A x {(Ax)}^TAx \neq 0 = x^{T}A^TAx (Ax)TAx=0=xTATAx,即 A T A A^TA ATA 是正定矩阵,正定矩阵一定可逆。反着可以推回去。

结论3

结论3:行满秩矩阵乘以列满秩矩阵,得不到满秩矩阵。例如: [ 1    0 ] ∗ [ 0    1 ] ⊤ = 0 [1~~0]*[0~~1]^{\top}=0 [1  0][0  1]=0

结论4

结论4:如果 B \boldsymbol{B} B是半正定,给定任意 δ > 0 \delta>0 δ>0 ( δ I + B ) − 1 (\delta\boldsymbol{I}+\boldsymbol{B})^{-1} (δI+B)1 一定存在,且是正定的。

证明:
如果 B \boldsymbol{B} B是半正定,则有 x T B x ⩾ 0 x^T\boldsymbol{B}x\geqslant0 xTBx0,另外因为 δ > 0 \delta>0 δ>0,所以对于 x ≠ 0 x\neq 0 x=0,有 δ x T x > 0 \delta x^Tx>0 δxTx>0,那么 x T ( δ I + B ) x = x T B x + δ x T x > 0 , ∀ x ≠ 0 x^T(\delta\boldsymbol{I}+\boldsymbol{B})x=x^T\boldsymbol{B}x+\delta x^Tx>0, \forall x\neq 0 xT(δI+B)x=xTBx+δxTx>0,x=0这说明 δ I + B \delta\boldsymbol{I}+\boldsymbol{B} δI+B 是正定的,那么 ( δ I + B ) − 1 (\delta\boldsymbol{I}+\boldsymbol{B})^{-1} (δI+B)1 一定存在,因为正定矩阵的逆还是正定矩阵,所以 ( δ I + B ) − 1 (\delta\boldsymbol{I}+\boldsymbol{B})^{-1} (δI+B)1 是正定的。

结论4:如果 A A A是行满秩, B B B是列满秩,那么一定存在 K K K使得 A K B AKB AKB的特征值均正(不一定是正定矩阵)。

证明:取 K K K A T B T A^TB^T ATBT,则 A K B = A A T B T B AKB=AA^TB^TB AKB=AATBTB。其中,根据结论2, A A T AA^T AAT B T B B^TB BTB均为正定矩阵,两个正定矩阵相乘,根据20211130 正定矩阵的几个不等式的结论4,特征值一定均正,但是不一定是正定矩阵。


定义补充

定义补充:来自Matrix Analysis Second Edition,Roger A. Horn
在这里插入图片描述

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DR-ZF-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值