结论1
结论1: A T A A^TA ATA不一定是正定矩阵,但一定是半正定矩阵(即特征值一定大于等于0)。
证明:
对于任意非零
x
∈
R
n
x\in\mathbb{R}^n
x∈Rn,存在
x
T
A
T
A
x
=
(
A
x
)
T
A
x
⩾
0
x^{T}A^TAx = {(Ax)}^TAx\geqslant 0
xTATAx=(Ax)TAx⩾0如果非零矢量
x
x
x处于
A
A
A的零空间,那么
(
A
x
)
T
A
x
=
0
{(Ax)}^TAx=0
(Ax)TAx=0,否则
(
A
x
)
T
A
x
>
0
{(Ax)}^TAx>0
(Ax)TAx>0,另外
A
T
A
A^TA
ATA 一定是对称的。因此
A
T
A
A^TA
ATA 不一定是正定矩阵,但一定是半正定矩阵(正定矩阵要求对于任意非零
x
x
x 都满足二次型大于0)。
结论2
结论2: A T A A^TA ATA是正定矩阵的充分必要条件是 A A A 满足列满秩。
证明:
如果
A
A
A 满足列满秩,那么
A
x
=
0
Ax=0
Ax=0的解只有
x
=
0
x=0
x=0,也就是说对于任意非零
x
∈
R
x\in\mathbb{R}
x∈R,
A
x
≠
0
Ax \neq 0
Ax=0,那么
(
A
x
)
T
A
x
≠
0
=
x
T
A
T
A
x
{(Ax)}^TAx \neq 0 = x^{T}A^TAx
(Ax)TAx=0=xTATAx,即
A
T
A
A^TA
ATA 是正定矩阵,正定矩阵一定可逆。反着可以推回去。
结论3
结论3:行满秩矩阵乘以列满秩矩阵,得不到满秩矩阵。例如: [ 1 0 ] ∗ [ 0 1 ] ⊤ = 0 [1~~0]*[0~~1]^{\top}=0 [1 0]∗[0 1]⊤=0。
结论4
结论4:如果 B \boldsymbol{B} B是半正定,给定任意 δ > 0 \delta>0 δ>0, ( δ I + B ) − 1 (\delta\boldsymbol{I}+\boldsymbol{B})^{-1} (δI+B)−1 一定存在,且是正定的。
证明:
如果
B
\boldsymbol{B}
B是半正定,则有
x
T
B
x
⩾
0
x^T\boldsymbol{B}x\geqslant0
xTBx⩾0,另外因为
δ
>
0
\delta>0
δ>0,所以对于
x
≠
0
x\neq 0
x=0,有
δ
x
T
x
>
0
\delta x^Tx>0
δxTx>0,那么
x
T
(
δ
I
+
B
)
x
=
x
T
B
x
+
δ
x
T
x
>
0
,
∀
x
≠
0
x^T(\delta\boldsymbol{I}+\boldsymbol{B})x=x^T\boldsymbol{B}x+\delta x^Tx>0, \forall x\neq 0
xT(δI+B)x=xTBx+δxTx>0,∀x=0这说明
δ
I
+
B
\delta\boldsymbol{I}+\boldsymbol{B}
δI+B 是正定的,那么
(
δ
I
+
B
)
−
1
(\delta\boldsymbol{I}+\boldsymbol{B})^{-1}
(δI+B)−1 一定存在,因为正定矩阵的逆还是正定矩阵,所以
(
δ
I
+
B
)
−
1
(\delta\boldsymbol{I}+\boldsymbol{B})^{-1}
(δI+B)−1 是正定的。
结论4:如果 A A A是行满秩, B B B是列满秩,那么一定存在 K K K使得 A K B AKB AKB的特征值均正(不一定是正定矩阵)。
证明:取 K K K为 A T B T A^TB^T ATBT,则 A K B = A A T B T B AKB=AA^TB^TB AKB=AATBTB。其中,根据结论2, A A T AA^T AAT和 B T B B^TB BTB均为正定矩阵,两个正定矩阵相乘,根据20211130 正定矩阵的几个不等式的结论4,特征值一定均正,但是不一定是正定矩阵。
定义补充
定义补充:来自Matrix Analysis Second Edition,Roger A. Horn