2019-10-12 线性最小方差估计和正交定理

很多东西再看第二遍的时候,都有一种恍然大悟的感觉

参数估计方法

现代控制理论中往往要通过观测值对系统内部结构参数进行估计,类似于我们常用的线性最小二乘法,举例:二维坐标(身高、年龄)给一堆的点,找俩参数,然后拟合一条直线 y = a x + b y=ax+b y=ax+b,确定 a a a b b b的过程中,就是参数估计。

现代控制理论中的经典参数估计包括:最小方差估计与线性最小方差估计、极大似然法与极大验后法、最小二乘估计与加权最小二乘估计、递推最小二乘估计。

线性最小方差估计

本博文中讲到的线性最小方差估计:设估计值是观测值的线性函数,估计误差的方差为最小。

使用此方法,需要知道观测值 z z z和被估计值 x x x的一、二阶矩(包括期望、方差、协方差)。

其核心公式为:
x ^ = a z + b \hat x=az+b x^=az+b
根据估计误差的方程:
J = E { [ x − x ^ ] 2 } = E { [ x − ( a z + b ) ] 2 } J=E \left\{ [x-\hat x]^2 \right\}=E \left\{ [x-(az+b)]^2 \right\} J=E{[xx^]2}=E{[x(az+b)]2}

分别对 a a a b b b求偏导,令其为0,可以获得相应的值:
a = C o v ( x , z ) σ z 2 a=\frac{Cov(x,z)}{\sigma_z^2} a=σz2Cov(x,z) b = m x − a m z b=m_x-am_z b=mxamz

OK,接着看正交定理。

正交定理

上面提到,在求参数的偏导的时候,令其为0,也就是:
∂ J ∂ a = − 2 E { [ x − ( a z + b ) ] z } = 0 \frac {\partial J}{\partial a}=-2E \left\{ [x-(az+b)]z \right\}=0 aJ=2E{[x(az+b)]z}=0
那么也就是 E [ x ~ z ] = 0 E[\tilde xz]=0 E[x~z]=0
也就是说我们所利用的信息就是 x ~ \tilde x x~ z z z的乘积的数学期望为0,概率论中称之为正交。

物理意义

思考:为什么上面的情况就叫做正交呢???能不能直观的解释一下???

那么我们可以看到,如果把这两个随机变量 x x x z z z看作是空间中的两个向量。因此我们在利用线性最小方差估计的时候,就有如下的图:
zhangfan_space
我们所估计出来的 x ^ \hat x x^是与 z z z共线的,那么什么时候其偏差最小呢,就是 x ~ = x − x ^ \tilde x=x-\hat x x~=xx^ z z z垂直的时候,这时候的偏差的长度是最短的,所以是 x ~ \tilde x x~ z z z正交,与正交定理吻合。

(注:不够严谨的地方望指正,谢谢?)

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DR-ZF-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值