Pytorch搭建CNN实现MNIST图像分类任务

对于MNIST数字图像分类任务,之前采用三层的全连接层进行分类,现在尝试采用CNN卷积神经网络对图片任务进行训练。

一、模型的构建

import torch.nn as nn
from torch import nn,optim
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision import datasets,transforms

class CNN(nn.Module):
    def __init__(self):
        super(CNN,self).__init__()
        self.layer1 = nn.Sequential(
            nn.Conv2d(1,16,kernel_size=3),  #(b,16,26,26)因为是黑白图片,只有一个通道,所以输入深度为1;输出深度为16,表示有16个神经元
            nn.BatchNorm2d(16),
            nn.ReLU(inplace=True))
    
        self.layer2 = nn.Sequential( 
            nn.Conv2d(16,32,kernel_size=3), #(b,32,24,24)
            nn.BatchNorm2d(32),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2,stride=2))  #(b,32,12,12)
        
        self.layer3 = nn.Sequential(
            nn.Conv2d(32,64,kernel_size=3),  #(b,64,10,10)
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True))

        self.layer4 = nn.Sequential(
            nn.Conv2d(64,128,kernel_size=3),  #(b,128,8,8)
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2,stride=2))  #(b,128,4,4)
        
        self.fc = nn.Sequential(
            nn.Linear(128*4*4,1024),  
            nn.ReLU(inplace=True),
            nn.Linear(1024,128),
            nn.ReLU(inplace=True),
            nn.Linear(128,10))
        
def foreward(self,x):
    x = self.layer1(x)  #(b,1,28,28),(1,16,3,3)——(b,16,26,26)  
    x = self.layer2(x)  #(b,16,26,26) ,(16,32,3,3) ——(b,32,24,24)——(b,32,12,12)
    x = self.layer3(x)  #(b,32,12,12),(32,64,3,3)) ——(b,10,10,64)
    x = self.layer4(x)  #(b,10,10,64),(64,128,3,3))——(b,128,8,8)——(b,128,4,4)
    x = x.view(x.size(0),-1) #(b,128,4,4)——(b,128*4*4)
    x = self.fc(x)  #(b,128*4*4)*(128*4*4,1024)——(b,1024)——(b,1024)*(1024,128)——(b,128)——(b,128)*(128,10)——(b,10)
    return x 

二、模型、损失函数和优化器的定义

#选择模型
model = CNN()
if torch.cuda.is_availabel():
    model = model.cuda()
    
#定义损失函数和优化器
criterion = nn.CrossEntropyLoss()  #交叉熵巡视
optimizer = optim.SGD(model.paramters(),lr=learning_rate)  #优化器:随机梯度下降

三、模型训练

epoch = 0
for data in train_loader:
    img, label = data
#     print(img.size())  #torch.Size([64, 1, 28, 28])
#     img = img.view(img.size(0), -1)  #将维度变为(64,1*28*28)----(batch,in_dim),全连接网络是,图片需要展开为1个维度,CNN模型不需要。
    if torch.cuda.is_available():
        img = img.cuda()   #输入维度:[64, 1, 28, 28]
        label = label.cuda()
    else:
        img = Variable(img)
        label = Variable(label)
    out = model(img)
    loss = criterion(out, label)
    print_loss = loss.data.item()
 
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    epoch+=1
    if epoch%50 == 0:
        print(f'epoch: {epoch},Train Loss:{loss.data.item():.6f}')  

四、模型评估

model.eval()
eval_loss = 0
eval_acc = 0
for data in test_loader:
    img,label = data
#     img = img.view(img.size(0),-1)  
    if torch.cuda.is_available():
        # volatile=True表示前向传播时不会保留缓存。测试集不需要做反向传播,所以可以在前向传播时释放掉内存,节约内存空间c
        img = Variable(img,volatile=True).cuda()
        label = Variable(label,volatile=True).cuda()
    else:
        img = Variable(img,volatile=True)
        label = Variable(label,volatile=True)
    out = model(img)
    loss = criterion(out,label)
    eval_loss += loss.data.item() * label.size(0)
    _,pred = torch.max(out,1)
    num_correct = (pred==label).sum()
    eval_acc += num_correct.data.item()
print(f'Test Loss:{eval_loss/(len(test_dataset)):.6f},Acc:{eval_acc/(len(test_dataset)):.6f}') 

五、总结

该网络包括4层卷积,2层最大池化,卷积之后使用批标准化加快收敛速度。使用 ReLU激活函数增加非线性、最后使用全连接层输出分类得分。
最后测试集准确率已经达到了99.31%,比之前使用的3层全连接神经网络的95.81%要高。可以看到通过增加网络的添度和复杂化网络的结构提高网络的准确率是可行的。

  • 1
    点赞
  • 41
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
### 回答1: MNIST 数据集是一个用来识别手写数字的常见数据集。要使用 CNN 实现 MNIST 数据集的识别,需要执行以下步骤: 1. 准备数据。MNIST 数据集包含 60000 张训练图像和 10000 张测试图像图像是 28x28 的灰度图像,每张图像都有一个与之对应的标签(数字)。 2. 构建 CNN 模型。CNN 通常由输入层、卷积层、池化层和全连接层组成。首先,输入层接受图像数据。然后,卷积层会使用不同的卷积核(又称滤波器)对输入进行卷积,从而提取图像的特征。池化层则会将提取的特征缩小,以减小模型的复杂度。最后,全连接层会将特征映射到输出,即对应的标签。 3. 训练模型。使用训练数据训练模型。训练过程中,模型会自动调整权重和偏置,以使模型的预测更准确。 4. 评估模型。使用测试数据评估模型的准确率。这有助于检查模型是否过拟合或欠拟合,并且可以为进一步提升模型性能提供线索 ### 回答2: CNN是卷积神经网络(Convolutional Neural Network)的缩写,它是一种深度学习网络结构,可以用于图像识别任务MNIST数据集是一个常用的手写数字识别数据集,包含了60000个训练样本和10000个测试样本,每个样本都是一个28×28像素的灰度图像。下面是使用CNN实现MNIST数据集识别的步骤: 1. 数据准备:首先,我们需要将MNIST数据集导入到程序中。可以使用Python的numpy和matplotlib库来加载和处理数据。数据集包含了训练集和测试集,每个样本都有对应的标签。 2. 构建CNN模型:我们需要设计一个合适的卷积神经网络模型来训练和识别MNIST数据集。CNN通常由卷积层、池化层和全连接层组成。可以使用Keras或PyTorch等深度学习库来构建模型,选择适当的网络结构和参数进行训练。 3. 模型训练:将准备好的训练数据输入到CNN模型中进行训练。训练过程中,模型会自动调整参数,通过反向传播算法更新权重。训练可以通过设置合适的超参数(如学习率、批次大小和训练轮数)来进行。 4. 模型评估:训练完成后,使用测试集评估模型的性能。将测试集输入到已训练好的模型进行预测,并与测试集中的真实标签进行对比。可以使用准确率等指标来评估模型的性能。 5. 模型应用:训练好的CNN模型可以应用于实际图像识别任务中。使用模型对新的手写数字图像进行预测,输出对应的数字标签。 通过以上步骤,我们可以使用CNN实现MNIST数据集的识别。CNN图像识别任务中取得了很好的效果,其卷积和池化操作可以有效地提取图像的特征,从而实现高精度的识别。 ### 回答3: CNN是一种深度学习算法,可以应用于图像识别任务,其中非常经典的一个应用就是用CNN实现MNIST数据集的识别。 MNIST数据集是一个由手写数字组成的数据集,其中包含了60000个训练样本和10000个测试样本,每个样本是一个28×28像素的灰度图像CNN的结构通常由卷积层、池化层和全连接层构成。首先,卷积层通过使用卷积核对输入图像进行卷积操作,提取图像的特征。卷积操作可以捕获图像中的边缘、纹理等特征。接下来,经过池化层的操作,通过降低特征图的维度,减少参数数量,同时保留主要的特征。最后,通过全连接层将提取的特征输入到 softmax 分类器中,实现对不同数字的分类。 具体实现中,可以使用Python语言和深度学习框架TensorFlow来实现CNN模型。首先,加载MNIST数据集,并对图像进行预处理,将其归一化到0-1之间。然后,搭建CNN模型,可以选择合适的卷积核大小、池化方式和激活函数等。接着,定义损失函数,一般使用交叉熵损失函数。最后,使用优化算法,如梯度下降法,来不断调整模型参数,使得损失函数最小化。 训练模型时,将训练样本输入CNN模型中,通过反向传播算法进行参数的更新,直到达到预设的停止条件。训练完成后,使用测试集评估模型的性能,计算准确率等指标。 通过实现CNN模型对MNIST数据集的识别,可以获得很高的准确率,达到甚至超过人类的识别能力。这个实验可以帮助我们理解深度学习和CNN图像识别领域的应用,并为以后深入研究和实践提供基础。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值