Pytorch搭建CNN实现MNIST图像分类任务

对于MNIST数字图像分类任务,之前采用三层的全连接层进行分类,现在尝试采用CNN卷积神经网络对图片任务进行训练。

一、模型的构建

import torch.nn as nn
from torch import nn,optim
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision import datasets,transforms

class CNN(nn.Module):
    def __init__(self):
        super(CNN,self).__init__()
        self.layer1 = nn.Sequential(
            nn.Conv2d(1,16,kernel_size=3),  #(b,16,26,26)因为是黑白图片,只有一个通道,所以输入深度为1;输出深度为16,表示有16个神经元
            nn.BatchNorm2d(16),
            nn.ReLU(inplace=True))
    
        self.layer2 = nn.Sequential( 
            nn.Conv2d(16,32,kernel_size=3), #(b,32,24,24)
            nn.BatchNorm2d(32),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2,stride=2))  #(b,32,12,12)
        
        self.layer3 = nn.Sequential(
            nn.Conv2d(32,64,kernel_size=3),  #(b,64,10,10)
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True))

        self.layer4 = nn.Sequential(
            nn.Conv2d(64,128,kernel_size=3),  #(b,128,8,8)
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2,stride=2))  #(b,128,4,4)
        
        self.fc = nn.Sequential(
            nn.Linear(128*4*4,1024),  
            nn.ReLU(inplace=True),
            nn.Linear(1024,128),
            nn.ReLU(inplace=True),
            nn.Linear(128,10))
        
def foreward(self,x):
    x = self.layer1(x)  #(b,1,28,28),(1,16,3,3)——(b,16,26,26)  
    x = self.layer2(x)  #(b,16,26,26) ,(16,32,3,3) ——(b,32,24,24)——(b,32,12,12)
    x = self.layer3(x)  #(b,32,12,12),(32,64,3,3)) ——(b,10,10,64)
    x = self.layer4(x)  #(b,10,10,64),(64,128,3,3))——(b,128,8,8)——(b,128,4,4)
    x = x.view(x.size(0),-1) #(b,128,4,4)——(b,128*4*4)
    x = self.fc(x)  #(b,128*4*4)*(128*4*4,1024)——(b,1024)——(b,1024)*(1024,128)——(b,128)——(b,128)*(128,10)——(b,10)
    return x 

二、模型、损失函数和优化器的定义

#选择模型
model = CNN()
if torch.cuda.is_availabel():
    model = model.cuda()
    
#定义损失函数和优化器
criterion = nn.CrossEntropyLoss()  #交叉熵巡视
optimizer = optim.SGD(model.paramters(),lr=learning_rate)  #优化器:随机梯度下降

三、模型训练

epoch = 0
for data in train_loader:
    img, label = data
#     print(img.size())  #torch.Size([64, 1, 28, 28])
#     img = img.view(img.size(0), -1)  #将维度变为(64,1*28*28)----(batch,in_dim),全连接网络是,图片需要展开为1个维度,CNN模型不需要。
    if torch.cuda.is_available():
        img = img.cuda()   #输入维度:[64, 1, 28, 28]
        label = label.cuda()
    else:
        img = Variable(img)
        label = Variable(label)
    out = model(img)
    loss = criterion(out, label)
    print_loss = loss.data.item()
 
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    epoch+=1
    if epoch%50 == 0:
        print(f'epoch: {epoch},Train Loss:{loss.data.item():.6f}')  

四、模型评估

model.eval()
eval_loss = 0
eval_acc = 0
for data in test_loader:
    img,label = data
#     img = img.view(img.size(0),-1)  
    if torch.cuda.is_available():
        # volatile=True表示前向传播时不会保留缓存。测试集不需要做反向传播,所以可以在前向传播时释放掉内存,节约内存空间c
        img = Variable(img,volatile=True).cuda()
        label = Variable(label,volatile=True).cuda()
    else:
        img = Variable(img,volatile=True)
        label = Variable(label,volatile=True)
    out = model(img)
    loss = criterion(out,label)
    eval_loss += loss.data.item() * label.size(0)
    _,pred = torch.max(out,1)
    num_correct = (pred==label).sum()
    eval_acc += num_correct.data.item()
print(f'Test Loss:{eval_loss/(len(test_dataset)):.6f},Acc:{eval_acc/(len(test_dataset)):.6f}') 

五、总结

该网络包括4层卷积,2层最大池化,卷积之后使用批标准化加快收敛速度。使用 ReLU激活函数增加非线性、最后使用全连接层输出分类得分。
最后测试集准确率已经达到了99.31%,比之前使用的3层全连接神经网络的95.81%要高。可以看到通过增加网络的添度和复杂化网络的结构提高网络的准确率是可行的。

  • 1
    点赞
  • 41
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值