7.5 贝叶斯网

7.5 贝叶斯网

  • 贝叶斯网又叫做信念网,它借助无环图来刻画属性之间的也来关系,并且使用条件概率表来描述属性的联合概率分布

具体来说,一个贝叶斯网B由结构G和参数谁他两部分构成,即B={G,谁他},网络结构G是一个有向无环图,其每个节点对应于一个属性,若两个属性有直接以来关系,则他们由一条边连接起来;参数谁他定量描述了这种依赖关系,假设属性Xi 在G中的父节点集是 Πi,则谁他包含了每个属性的条件概率 谁他xi | Π i =Pb(x i |Π i)

作为一个例子,图7.2给出了西瓜问题的一种贝叶斯网结构和属性“根蒂”的条件概率表,从图中网络结构可以看出来:“色泽”直接依赖于“好瓜”和“甜度”,而“根蒂”直接依赖于甜度,进一步哦操你个条件概率表中可以得到“根蒂”对“甜度”的量化依赖关系,如 P( 硬挺 | 高) =0.1 等

7.5.1 结构

  • 贝叶斯结构有效的表达了属性间的条件独立性,给定父结点集,贝叶斯网假设每个属性与它的非后裔属性独立,于是 B={G,谁他},将属性x1,x2,x3,xd的联合概率分布定义为

    Pb(x1,x2……x5) =P(x1)P(x2)P(x3 |x1) P(x4 |x1,x2)P(x5|x2)

    显然, x3和x4在给定x1的取值时独立,x4和x5在给定x2取值的时候独立,分别简单的记作 x3和 x4独立在x1给定的时候,x4 和x5 在x2给定的额时候独立、

    同父结构 V型结构 顺序结构

    在同父结果后中,给定父节点x1的取值,则x3和x4相互独立,在“顺序”结构中,给定x的取值,则y和z条件独立,V型结构中,也叫做冲撞结构,给定子节点x4的取值,x1和x2必定不独立。奇妙的是,如果x4的取值完全未知,则V型情况下,x1和x2确实相互独立的,我们可以做一个简单的验证。

​ P(x1,x2)= 求和 P(x1,x2,x4)

​ = 求和 P(x4 | x1,x2) * P(x1) * P(x2)

​ = P(x1) *P(x2)

  • 这样的独立性称之为 “边际独立性” 记作 x1 边际独立于 x2

事实上,一个变量的取值的正确与否,能对另外两个变量之间的独立性发生影响,这个现象并非V型结构独特有,例如,在同父结构中,条件独立性 x3 和x4 依赖于x1,但是如果x1的取值未知,则x3和x4就不独立,即x3和x4不是边际独立。则顺序结构中,在x确定的时候y和z独立,但是y和z不是边界独立

为了分析有向图中变量间的条件独立性,可以使用“有向分离”,我们先把有向图转变为一个有向图赚百万内一个无向图

  • 找出有向图中的所有V型结构,在V型结构的两个父节点之间加上一条无向边
  • 将所有有向边改为无向边

由此产生的无向图称为“道德图”,令父节点相连的过程称之为道德化

基于道德图能够直观,迅速的找到变量之间的条件独立性,假定道德图中有变量x,和y和集合变量z={zi},若变量x和y能够在图上焙z分开,则从道德图中将集合变量z去除后,x和y分属于两个连通的分支,则称x和y被z有向分离,x和y在z给定的时候,独立成立。例如,图7.2所对应的道德图如7.4所示,在图中能够容易的找到所有条件独立关系

全概率分布可以回答相关领域的任何问题,但随着变量数目的增 加,全概率分布的联合取值空间却可能变得很大。另外,对所有的原 子事实给出概率,对用户来说也非常困难。 若使用Bayes 规则,就可以利用变量之间的条件独立关系简化计 算过程,大大降低所需要声明的条件概率的数目。我们可以用一个叫 作Bayesian 数据结构来表示变量之间的依赖关系,并为全概率分 布给出一个简明的表示。 定义(Bayesian ):Bayesian T 是一个三元组(N,A,P),其 中 1. N 是节点集合 2. A 是有向弧集合,与N 组成有限非循环图G =(N,A) 3. P {p(V | ) :V N} v    ,其中 v  代表节点V 的父亲节点集合 Bayesian 是一个有向非循环图: (1中节点与知识领域的随机变量一一对应(下文中不区分节 点与变量); (2中的有向弧表示变量间的因果关系,从节点X 到节点Y 有 向弧的直观含义是X 对Y 有直接的因果影响;影响的强度或者说不确 定性由条件概率表示; (3)每个节点有一个条件概率表,定量描述其所有父亲节点对于 该节点的作用效果。 -2- (4)由领域专家给定络结构和条件概率表。 )由领域专家给定络结构和条件概率表。 )由领域专家给定络结构和条件概率表。 )由领域专家给定络结构和条件概率表。 )由领域专家给定络结构和条件概率表。 )由领域专家给定络结构和条件概率表。 )由领域专家给定络结构和条件概率表。 )由领域专家给定络结构和条件概率表。 )由领域专家给定络结构和条件概率表。 对领域专家来说,决定在特中存哪些条件独立联系通常是 对领域专家来说,决定在特中存哪些条件独立联系通常是 对领域专家来说,决定在特中存哪些条件独立联系通常是 对领域专家来说,决定在特中存哪些条件独立联系通常是 对领域专家来说,决定在特中存哪些条件独立联系通常是 对领域专家来说,决定在特中存哪些条件独立联系通常是 对领域专家来说,决定在特中存哪些条件独立联系通常是 对领域专家来说,决定在特中存哪些条件独立联系通常是 对领域专家来说,决定在特中存哪些条件独立联系通常是 对领域专家来说,决定在特中存哪些条件独立联系通常是 对领域专家来说,决定在特中存哪些条件独立联系通常是 对领域专家来说,决定在特中存哪些条件独立联系通常是 对领域专家来说,决定在特中存哪些条件独立联系通常是 对领域专家来说,决定在特中存哪些条件独立联系通常是 较容易的 较容易的 较容易的 (给定络结构相对容易 给定络结构相对容易 给定络结构相对容易 给定络结构相对容易 给定络结构相对容易 )─ 事实上,要远比际声明出这 事实上,要远比际声明出这 事实上,要远比际声明出这 事实上,要远比际声明出这 事实上,要远比际声明出这 事实上,要远比际声明出这 事实上,要远比际声明出这 事实上,要远比际声明出这 事实上,要远比际声明出这 些概率本身容易得多 些概率本身容易得多 些概率本身容易得多 些概率本身容易得多 些概率本身容易得多 (给定准确的条件概率相对 给定准确的条件概率相对 给定准确的条件概率相对 给定准确的条件概率相对 给定准确的条件概率相对 给定准确的条件概率相对 困难) 。一旦 。一旦 。一旦 BayesianBayesianBayesianBayesianBayesian Bayesian的拓扑结构给定, 则只需对那些直接相互依赖节点出条件概率的拓扑结构给定, 则只需对那些直接相互依赖节点出条件概率的拓扑结构给定, 则只需对那些直接相互依赖节点出条件概率的拓扑结构给定, 则只需对那些直接相互依赖节点出条件概率的拓扑结构给定, 则只需对那些直接相互依赖节点出条件概率的拓扑结构给定, 则只需对那些直接相互依赖节点出条件概率的拓扑结构给定, 则只需对那些直接相互依赖节点出条件概率的拓扑结构给定, 则只需对那些直接相互依赖节点出条件概率的拓扑结构给定, 则只需对那些直接相互依赖节点出条件概率的拓扑结构给定, 则只需对那些直接相互依赖节点出条件概率的拓扑结构给定, 则只需对那些直接相互依赖节点出条件概率
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值