【PyTorch】神经网络基础

本文介绍了PyTorch作为神经网络中的Numpy,强调了Numpy与Torch的区别,重点讲解了Variable变量的概念及其在神经网络参数更新中的作用,并探讨了激励函数在解决非线性问题中的重要性,提到了常用的激活函数如sigmoid、tanh和ReLU。
摘要由CSDN通过智能技术生成

本文为 PyTorch 学习总结,讲解神经网络基础。欢迎交流

Numpy与Torch对比

Numpy 是处理矩阵等数据的模块,会使用多核加速运算。而 PyTorch 就是神经网络中的 Numpy,是 Torch(张量)的类型,张量的维度可以大于 2。

下面举例说明 Numpy 和 Torch 的一些区别:

# 首先引入包
import torch
import numpy as np

# 创造一个numpy的数据,reshape成2行3列
np_data = np.arange(6).reshape((2, 3))
# 将numpy转换为torch中tensor的数据
torch_data = torch.from_numpy(np_data)
# 将tensor转换为numpy的数据
tensor2array = torch_data.numpy()

print(
	'\nnumpy', np_data,
    '\ntorch', torch_data,
    '\ntensor2array', tensor2array,
)

如果对运算形式感兴趣,推荐浏览 pytorch 官网文档。这里仅介绍一些基本的运算:

data = [-1, -2, 1, 2]
# 将data转换为32bit浮点数
tensor = torch.FloatTensor(data)

# abs,也可以是sin,mean,用法相同
print(
	'\nabs',
    '\nnumpy:', np.abs(data), # [1 2 1 2]
    '\ntorch:', torch.abs(tensor), # [1 2 1 2]</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值