【论文分享】RegNeRF: Regularizing Neural Radiance Fields for View Synthesis from Sparse Inputs

RegNeRF:通过正则化神经辐射场达到稀疏输入的视图合成

论文地址:RegNeRF

回顾:NeRF 

NeRF 训练了一个网络,网络包含5D的输入,包括像素点的位置 xyz 和观察方向 \theta \varphi,输入到神经辐射场 F_\Theta 中,得到颜色 c 和密度值 \sigma 的输出,最后再通过体渲染得到最终的图像。

但是我们可以看到,NeRF 需要大量的输入图像,整个半球上都有大量的相机来获取不同视角的输入图像,因此产生了一个问题,就是在现实场景中,我们几乎不太可能有这么密集的输入图像.

基于此,这篇论文的研究目的就是在稀疏输入视图下进行视图合成。


稀疏输入的视图合成

提出问题:如果输入视图的数量稀疏,NeRF的性能会显著下降。 

出现伪影的主要原因:

  • 场景几何估计错误
  • 训练开始时的发散行为

改进措施

  • 对从未观察到的viewpoint渲染的patches的进行几何正则化
  • 在训练过程中对射线采样空间进行退火(annealing)
  • 使用归一化流模型(normalizing flow model)来进行颜色正则化 

 Model: RegNeRF

RegNeRF

我们有一组相机位置的集合,它包含了很多不同的相机位姿,但其中只有少量是已经观察到的相机,也就是蓝色的这些,我们已知他们的图像。现在要做的就是从这些未知的红色相机来进行采样,向场景投射光线,采样这条红色射线上的点,输入到神经辐射场 f_\theta,得到颜色 c 和密度 \sigma

我们把视图随机分为一些patch,对patch中每个像素进行采样,得到一个预测的 RGB 颜色的patch \hat{P} 和一个depth patchd \hat{d}_\theta,然后对rgb patch进行外观正则化,depth patch进行场景几何正则化。

 

几何正则

先验:现实世界的几何结构往往是分段平滑的,即平面结构比高频结构更可能。  

深度计算方法(类似于NeRF): 

鼓励深度平滑,depth smoothness loss:

颜色正则 

核心思想:估计渲染块的对数似然函数(LL),并在优化过程中对其进行最大化。 

使用非结构化2D图像数据集,包含不同的自然图像,使得能够对重建的任何类型的真实世界场景重复使用相同的流模型。

使用RealNVP中的流模型估计渲染块的负对数似然NLL,定义颜色正则化损失为:

Total Loss


采样空间退火

思想:在最初的迭代过程中,将场景采样空间限制在更小的区域。 

刚刚提到作者认为NeRF性能下降的主要原因:场景几何估计错误和训练开始时的发散行为。几何估计错误通过几何正则化解决,那么训练开始时的发散,作者发现可以通过采样空间退火来避免这一问题。

NeRF体渲染公式

  

i-当前迭代,Nt-总迭代次数,Ps表示开始区间(如0.5),tm为tn与tf中点

mip-NeRF 

NeRF在渲染过程中,只对相机位置固定、改变观察方向的视角生成上表现较好,如果拉近或者拉远图像,(NeRF在做渲染时)会出现模糊(blurred)和锯齿(aliased)的情况。NeRF每像素只投射一条光线,而mip-NeRF则投射一个圆锥体。

mip-NeRF相对于NeRF而言主要有两个改进:

  • 用圆锥取代光线
  • 把nerf的coarse和fine这两个MLP用一个multiscale MLP替代,从而提高训练速度并减小模型大小  

故论文中使用mip-NeRF代替NeRF。

 


实验

消融实验


总结 

  • 提出一种稀疏输入场景模型的新方法——RegNeRF
  • 从未观察到的视点渲染几何形状和外观,并在训练期间对射线采样空间采用退火策略
  • 使用规范化流模型来正则化颜色,使用深度平滑来正则化几何 
  • 3
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

juvenility

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值