AI融合新突破:CNN与Transformer的强强联合!

CNN 和 Transformer 是深度学习中两种强大的模型,它们各自在图像处理和自然语言处理领域取得了巨大成功。将这两种模型融合起来,可以创造出一种新型的架构,以利用 CNN 在空间特征提取方面的优势和 Transformer 在处理序列数据方面的能力。

沃的顶会汇总了36种【CNN与Transformer融合】创新路径,希望给各位的学术研究提供一些帮助。

最新融合创新方案

 #01 HAFormer 

| 融合 CNN 与 Transformer 的高效轻量级语义分割模型

论文标题:Unleashing the Power of Hierarchy-Aware Features for Lightweight Semantic Segmentation

方法:本文提出了HAFormer模型,该模型结合了CNN的分层特征提取能力与Transformer的全局依赖建模能力,以应对轻量级语义分割挑战。HAFormer的整体架构包括三个组件:一个带有层次感知像素激活增强的CNN编码器,一个高效的Transformer编码器,以及一个轻量级的解码器。

图片

创新点:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值