B站账号@狼群里的小杨,记得点赞收藏加关注,一键三连哦!
废话不多说,干货全在代码里面了。各位自行学习!
'''
python3.7
-*- coding: UTF-8 -*-
@Project -> File :Code -> Stock
@IDE :PyCharm
@Author :YangShouWei
@USER: 296714435
@Date :2021/3/18 15:52:15
@LastEditor:
'''
import tushare as ts # 引入股票基本数据相关库
import numpy as np
import pandas as pd
import talib # 引入股票衍生变量数据相关库
import matplotlib.pyplot as plt
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score # 引入预测准确度评分函数
from sklearn.model_selection import GridSearchCV # 网格搜索参数调优函数
# #获取数据
# 1. 获取股票基本数据
df = ts.get_k_data('000002', start='2016-01-01',end='2020-12-31')
df = df.set_index('date') # 将日期作为索引值
# 2.简单衍生变量数据构造
df['close-open'] = (df['close']-df['open'])/df['open']
df['high-low'] = (df['high']-df['low'])/df['low']
df['pre_close'] = df['close'].shift(1)
df['price_change'] = df['close']-df['pre_close']
df['p_change'] = (df['close']-