Python特征工程之数据预处理

Get_dummies哑变量处理

哑变量也叫虚拟变量,通常取值为0或1。

import pandas as pd

df = pd.DataFrame({'客户编号': [1, 2, 3], '性别': ['男', '女', '男']})
print(df)
df = pd.get_dummies(df, columns=['性别']) # 第1个参数为表格名称,第2个参数为需要处理的列的名称
print(df)
"""虽然现在已经将文本类型的数据转换成了数字,但是“性别_女”和“性别_男”这两列存在多重共线性,
即知道其中一列的内容,就能知道另一列的内容,用公式来表达就是:性别_男=1-性别_女。"""
df = df.drop(columns='性别_女')
df = df.rename(columns={'性别_男': '性别'})  # 更改列名
print(df)

演示运行图
在这里插入图片描述
也可以使用如下代码来依次遍历数据中的列找出描述型的数据,进行哑变量转换。

if str(data[col].dtype) == 'object': # 判断该列是否是字符类型的描述性特征
        dummies_df = pd.get_dummies(data[col], prefix=str(col))
        data = data.drop(col, axis=1)
        data = data.join(dummies_df)
Label Encoding编号处理

LabelEncoder()函数将文本类型的数据转换成数字。

import pandas as pd
from sklearn.preprocessing import LabelEncoder

df = pd.DataFrame({'编号': [1, 2, 3, 4, 5], '城市': ['北京', '上海', '广州', '深圳', '北京']})
print(df)

le = LabelEncoder()
# 将待转化的列传入模型中进行拟合,并将结果赋给变量label
label = le.fit_transform(df['城市']) 
print(label)
df['城市'] = label
print(df)

原始数据内容
在这里插入图片描述
LabelEncoder()函数编码以后的数据内容
在这里插入图片描述
上述示例中使用Label Encoding处理后产生了一个奇怪的现象:上海和广州的平均值是北京,这个现象其实是没有现实意义的,这也是Label Encoding的一个缺点——可能会产生一些没有意义的关系。不过树模型(如决策树、随机森林及XGBoost等集成算法)能很好地处理这种转化,因此对于树模型来说,这种奇怪的现象是不会影响结果的。

replace()函数

LabelEncoder()函数生成的数字是随机的,如果想按特定内容进行替换,可以使用replace()函数。

import pandas as pd


df = pd.DataFrame({'编号': [1, 2, 3, 4, 5], '城市': ['北京', '上海', '广州', '深圳', '北京']})
print(df)
# 当分类较多时,首先查看属性内容
print(df['城市'].value_counts())
df['城市'] = df['城市'].replace({'北京': 0, '上海': 1, '广州': 2, '深圳': 3})
print(df)
总结

总结来说,Get_dummies的优点是它的值只有0和1,缺点是当类别的数量很多时,特征维度会很高,此时可以配合使用PCA(主成分分析)来减少维度。如果类别数量不多,可以优先考虑使用Get_dummies,其次考虑使用Label Encoding或replace()函数;但如果是基于树模型的机器学习模型,用LabelEncoding也没有太大关系。

数据标准化
  1. min-max标准化
    min-max标准化(Min-Max Normalization)也称离差标准化,它利用原始数据的最大值和最小值把原始数据转换到[0,1]区间内,转换公式如下。
    在这里插入图片描述
    其中x、x*分别为转换前和转换后的值,max、min分别为原始数据的最大值和最小值。

演示代码

import pandas as pd
from sklearn.preprocessing import MinMaxScaler

X = pd.DataFrame({'酒精含量': [50, 60, 40, 80, 100], '苹果酸含量(%)': [2, 1, 1, 3, 2]})
y = [0, 0, 0, 1, 1]
X_new = MinMaxScaler().fit_transform(X) # 归一化处理
print(X, '\n', X_new)
  1. Z-score标准化
    Z-score标准化(Mean Normaliztion)也称均值归一化,通过原始数据的均值(mean)和标准差(standard deviation)对数据进行标准化。标准化后的数据符合标准正态分布,即均值为0,标准差为1。转换公式如下。
    在这里插入图片描述
    其中x和x*分别为转换前和转换后的值,mean为原始数据的均值,std为原始数据的标准差。
    演示代码
import pandas as pd
from sklearn.preprocessing import StandardScaler # 引入Z-score标准化模块

X = pd.DataFrame({'酒精含量': [50, 60, 40, 80, 100], '苹果酸含量(%)': [2, 1, 1, 3, 2]})
y = [0, 0, 0, 1, 1]
X_new = StandardScaler().fit_transform(X)  # 标准化处理
print(X, '\n', X_new)

对一些量纲相差较大的特征变量,实战中通常会先进行数据标准化,再进行训练集和测试集划分。
除了K近邻算法模型,还有一些模型也是基于距离的,所以量纲对模型影响较大,就需要进行数据标准化,如支持向量机模型、KMeans聚类分析、PCA(主成分分析)等。此外,对于一些线性模型,如线性回归模型和逻辑回归模型,有时也需要进行数据标准化处理。
对于树模型则无须做数据标准化处理,因为数值缩放不影响分裂点位置,对树模型的结构不造成影响。因此,决策树模型及基于决策树模型的随机森林模型、AdaBoost模型、GBDT模型、XGBoost模型、LightGBM模型通常都不需要进行数据标准化处理,因为它们不关心变量的值,而是关心变量的分布和变量之间的条件概率。在树模型相关的机器学习模型中,进行数据标准化对预测结果不会产生影响。
在实际工作中,如果不确定是否要做数据标准化,可以先尝试做一做数据标准化,看看模型预测准确度是否有提升,如果提升较明显,则推荐进行数据标准化。

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值