在学习机器学习的线性回归这块内容,想再一次好好理清楚算法的基本思路。最初还是使用了excel来理顺一遍思路。excel的数据分析功能也还是十分便捷的,计算也十分方便。
本博客共使用四个详细例子来介绍线性回归。分别是1、女士的身高-体重例子–借助excel数据分析功能;2、气温-冰红茶销售量例子。–直接计算;3、薪资-性别-年龄-教育程度例子。–借助excel数据分析功能;4、店铺营业额-店铺面积-离车站距离例子。–直接计算。
一元线性回归
1、女士的身高-体重例子。–借助excel数据分析功能
使用excel中散点图功能将数据绘制成散点图。

散点图右键,选择“设置趋势线格式”。

弹出的设置框可以设置散点图样式,趋势线选择线性,勾选显示公式、显示R平方值。

同样的,在坐标轴右键,选择“设置坐标轴格式”。弹出的设置框可以修改一下坐标轴的初始值,让散点图更好看一些。

最终散点图如下。可以看到数据分布特征非常明显,呈现线性分布。右键添加趋势线,并显示方程、R²。R²=0.991,接近于 1,说明模型能够解释99.1%的方差,效果非常好。

本文通过四个实例深入浅出地介绍了线性回归算法的应用,包括使用Excel进行数据分析和手动计算,覆盖一元和多元线性回归,适合初学者理解并实践线性回归。
最低0.47元/天 解锁文章
1万+





