从数学上证明神经网络可以无限逼近连续函数

对于标题其实完整的陈述是这样的:
神经网络可以在一个紧致集(compact set)上逼近任意连续函数。

划重点,首先是紧致集,这是集合论中的知识,你可以把它想象为在一个确切的闭区间 [a, b] 内,可以用神经网络接近任何函数。这个边界必须要明确,实际上你是不可能使用神经网络对输入 x 在 ( − ∞ , + ∞ ) (-\infin,+\infin) (,+)区间上逼近 f ( x ) = x 2 f(x)=x^{2} f(x)=x2

第二是逼近这个在数学上的定义:Universal approximation theorem实际上逼近就是对于原函数 f(x) 来说,定义一个逼近函数函数的实现为F(x),则对于任意小的误差 ϵ \epsilon ϵ ,都有: ∣ F ( x ) − f ( x ) ∣ < ϵ |F(x)-f(x)|<\epsilon F(x)f(x)<ϵ。数学上的证明你可以看这一篇,使用 sigmoid 进行函数逼近Universal Approximation Bounds for Superpositions of a Sigmoidal Function
而从图形上来理解其实那么多节点组合起来总是能拼成一个类似的图形。相关文献:A visual proof that neural nets can compute any function

实际上能逼近任何连续函数的特性也并不是神经网络独有的,像多项式函数,样条曲线,径向基函数都可以实现逼近任意连续函数。因此这个问题的实质和函数逼近理论相关。

参考链接:
知乎回答

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值