YOLOv5训练结果的Params (M)、FLOPs (G)、Size (M) 解析(适合新人)

在YOLOv5训练中,“Params (M)”、“FLOPs (G)” 和 “Size (M)” 分别代表以下含义:

  1. Params (M):这代表模型的参数量,单位是百万(Million)。参数量是指模型中所有权重和偏置的总数,通常用来衡量模型的大小和复杂度。参数量越小,模型越轻量,但可能在性能上有所牺牲。

  2. FLOPs (G):这代表模型的浮点运算次数,单位是十亿(Giga),即模型在进行一次前向传播时需要执行的浮点运算的总数。FLOPs可以用来衡量算法或模型的计算复杂度,对于硬件资源有限的环境,低FLOPs的模型可能更适合部署。

  3. Size (M):这代表模型文件的大小,单位是兆字节(Megabyte)。模型文件大小包括了模型的参数和可能的二进制信息等,对于模型部署来说,较小的模型文件大小有利于减少存储和传输的开销。

这三个指标都是衡量深度学习模型性能的重要参数,它们可以帮助我们理解模型的复杂度、计算需求和存储需求。

帮忙把这个训练结果:YOLOv5s summary: 157 layers, 7020913 parameters, 0
gradients, 15.8 GFLOPs换算为Params (M)

在深度学习中,参数数量通常用百万(M)作为单位来表示。给定的YOLOv5s模型有7020913个参数。要将这个数字换算成以百万为单位的格式,你需要将参数数量除以1,000,000:
所以,YOLOv5s模型的参数数量大约是7.02百万(7.02 M)。

要计算每秒帧数(Frames Per Second, FPS),我们首先需要知道处理每张图片所需的时间,然后取这个时间的倒数。
帮忙把这个训练结果:Speed: 0.6ms pre-process, 6.6ms inference, 2.8ms NMS per
image at shape (16, 3, 640, 640) 转成FPS为多少呢?

给定的处理时间包括三个部分:

  • 预处理(pre-process):0.6毫秒(ms)
  • 推理(inference):6.6毫秒(ms)
  • 非极大值抑制(NMS):2.8毫秒(ms)

然后,我们将1秒(1000毫秒)除以这个总时间来得到FPS
所以,这个模型的处理速度大约是每秒100帧(FPS)。这意味着模型可以在一秒钟内处理100张图片。

### 计算YOLO模型的参数量 对于神经网络而言,参数量主要由卷积层、全连接层和其他可训练层中的权重和偏置构成。YOLO模型作为一个典型的卷积神经网络结构,在计算其参数数量时同样遵循这一原则。 #### 卷积层参数量计算方法 假设有一个输入通道数为\(C_{in}\),输出通道数为\(C_{out}\),卷积核尺寸为\(K \times K\)的标准二维卷积操作,则该层所含有的参数总数可以通过下面的公式得出: \[Params = C_{out} * (C_{in} * K^{2}) + bias\] 其中bias项表示是否有偏置,默认情况下每种类型的滤波器都有一个对应的偏置值,因此这里加了一个额外的\(C_{out}\)[^1]。 #### 全连接层参数量计算方式 如果存在全连接层的话,设前一层有\(N_{input}\)个节点,当前层拥有\(N_{output}\)个节点,那么此部分产生的参数数目则等于两者的乘积再加上截距向量长度: \[Params = N_{input} * N_{output} + N_{output}\] 需要注意的是,现代版本的YOLO架构已经逐渐减少了甚至完全取消了传统意义上的全连接层设计,转而采用更加高效的全局平均池化等替代方案来降低整体复杂度并提高泛化能力[^2]。 #### Darknet-53作为YOLOv3的基础骨干网举例说明 以Darknet-53为例,这是YOLOv3使用的特征提取子网络之一。它包含了多个残差模块以及不同尺度的空间金字塔池化(SPP)组件。具体到每一个组成部分内部又细分为若干标准或改进型的卷积单元。要精确统计整个框架下的总参数量,就需要逐一对这些基本构建块进行上述公式的应用累加起来得到最终结果。 ```python def calculate_conv_params(cin, cout, kernel_size=3, with_bias=True): params = cin * kernel_size ** 2 * cout if with_bias: params += cout return params def calculate_fc_params(n_input, n_output, with_bias=True): params = n_input * n_output if with_bias: params += n_output return params ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值