在YOLOv5训练中,“Params (M)”、“FLOPs (G)” 和 “Size (M)” 分别代表以下含义:
-
Params (M):这代表模型的参数量,单位是百万(Million)。参数量是指模型中所有权重和偏置的总数,通常用来衡量模型的大小和复杂度。参数量越小,模型越轻量,但可能在性能上有所牺牲。
-
FLOPs (G):这代表模型的浮点运算次数,单位是十亿(Giga),即模型在进行一次前向传播时需要执行的浮点运算的总数。FLOPs可以用来衡量算法或模型的计算复杂度,对于硬件资源有限的环境,低FLOPs的模型可能更适合部署。
-
Size (M):这代表模型文件的大小,单位是兆字节(Megabyte)。模型文件大小包括了模型的参数和可能的二进制信息等,对于模型部署来说,较小的模型文件大小有利于减少存储和传输的开销。
这三个指标都是衡量深度学习模型性能的重要参数,它们可以帮助我们理解模型的复杂度、计算需求和存储需求。
帮忙把这个训练结果:YOLOv5s summary: 157 layers, 7020913 parameters, 0
gradients, 15.8 GFLOPs换算为Params (M)
在深度学习中,参数数量通常用百万(M)作为单位来表示。给定的YOLOv5s模型有7020913个参数。要将这个数字换算成以百万为单位的格式,你需要将参数数量除以1,000,000:
所以,YOLOv5s模型的参数数量大约是7.02百万(7.02 M)。
要计算每秒帧数(Frames Per Second, FPS),我们首先需要知道处理每张图片所需的时间,然后取这个时间的倒数。
帮忙把这个训练结果:Speed: 0.6ms pre-process, 6.6ms inference, 2.8ms NMS per
image at shape (16, 3, 640, 640) 转成FPS为多少呢?
给定的处理时间包括三个部分:
- 预处理(pre-process):0.6毫秒(ms)
- 推理(inference):6.6毫秒(ms)
- 非极大值抑制(NMS):2.8毫秒(ms)
然后,我们将1秒(1000毫秒)除以这个总时间来得到FPS
所以,这个模型的处理速度大约是每秒100帧(FPS)。这意味着模型可以在一秒钟内处理100张图片。