科研训练2——搭建tensorflow环境

本文介绍了如何配置Tensorflow-GPU的环境,包括配置镜像源、创建新环境、安装相关包,以及将环境加载到PyCharm中。详细步骤包括使用清华镜像源加速pip安装,创建并激活tensorflow-gpu环境,安装Paddle-GPU、Keras、h5py、opencv等库,并指导如何在PyCharm中设置该环境。最后,提供了训练代码的运行说明和权重文件的下载链接。
摘要由CSDN通过智能技术生成

1. 配置环境

1.1 配置镜像源

需要注意的是,pip中下载安装比较慢,可以换个清华镜像源。
到用户文件夹下,创建一个pip文件夹,然后在pip文件夹里创建一个txt文件。
在这里插入图片描述
修改txt文件的内容,并且把后缀改成ini。

[global]
index-url = https://pypi.tuna.tsinghua.edu.cn/simple

在这里插入图片描述

1.2 创建新环境

Win+R启动cmd,在命令提示符内输入以下命令:
创建名称为tensorflow-gpu的环境,Python为3.6版。

conda create –n tensorflow-gpu python=3.6

1.3 进入该环境

进入创建的tensorflow-gpu环境。

activate tensorflow-gpu 

1.4 安装相关包

安装paddle-gpu库。

pip install tensorflow-gpu==2.2.0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值