区间dp(三)——#10149. 「一本通 5.1 例 3」凸多边形的划分

题目链接:https://loj.ac/problem/10149
解题思路
凸多边形的划分也是区间dp的经典题目,dp[i][j]表示i~j进行凸多边形划分最少花费。dp[i][j]=max(dp[i][j],dp[i][k]+dp[k][j]+a[i]*a[k]*a[j])。a[]为每个点的权值。
在这里插入图片描述
我们选k,然后与i,j构成三角形,就可以把图分成三块,将问题分为紫色的两块子问题继续解决,且无后效性。
代码实现,肯定爆long long,我是用__int128 因为写起来简单QAQ ,当然也可以用高精度。
AC代码

#include <bits/stdc++.h>
using namespace std;
inline __int128 read()
{
    __int128 x=0,f=1;
    char ch=getchar();
    while(ch<'0'||ch>'9')
    {
        if(ch=='-')
            f=-1;
        ch=getchar();
    }
    while(ch>='0'&&ch<='9')
    {
        x=x*10+ch-'0';
        ch=getchar();
    }
    return x*f;
}
inline void write(__int128 x)
{
    if(x<0)
    {
        putchar('-');
        x=-x;
    }
    if(x>9)
        write(x/10);
    putchar(x%10+'0');
}
__int128 get_min(__int128 x,__int128 y)
{
    if(x<=y)
    return x;
    else
    return y;
}
__int128 dp[105][105];
__int128 a[105];
int main()
{
    int n;
    scanf("%d",&n);
    for(int i=1;i<=n;++i)
    a[i]=read();
    for(int len=3;len<=n;++len)
    {
        for(int i=1;i<n;++i)
        {
            int j=i+len-1;
            if(j>n)
            break;
            dp[i][j]=dp[i][i+1]+dp[i+1][j]+a[i]*a[i+1]*a[j];
            for(int k=i+2;k<j;++k)
            dp[i][j]=min(dp[i][j],dp[i][k]+dp[k][j]+a[i]*a[k]*a[j]);
        }
    }
    __int128 mi=dp[1][n];
    write(mi);
    return 0;
}

©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页