【毕设记录】异质性检验

我这里是使用“交乘”或“分组”进行检验

推荐阅读:[1]连玉君,廖俊平.如何检验分组回归后的组间系数差异?[J].郑州航空工业管理学院学报,2017,35(06):97-109.DOI:10.19327/j.cnki.zuaxb.1007-9734.2017.06.010.

把小结粘贴下:

方法1( 加入交乘项) 在多数模型中都可以使用,但要注意其背后的假设条件是比较严格的。若在混合回归中,只引入关心的变量( ttl_exp) 与分组变量( black) 的交乘项( ttl _exp *black) ,则相当于假设其他控制变量在两组之间不存在系数差异。相对保守的处理方法是: 在混合估计时,引入所有变量与分组变量的交乘项,同时附加vce( robust) 选项,以克服异方差的影响。

方法2( 基于SUR模型的检验) 执行起来也比较方便,假设条件也比较宽松: 允许两组中所有变量的系数都存在差异,也允许两组的干扰项具有不同的分布,且彼此相关。局限在于,有些令无法使用suest 执行联合估计,如几乎所有针对面板数据的命令都不支持( xtreg,xtabond等) 。

方法3( 组合检验) 是三种方法中假设条件最为宽松的,只要求原始样本是从母体中随机抽取的( 看似简单,但很难检验) ,而对于两个样本组中干扰项的分布,以及衡量组间系数差异统计量d = β1 - β2的分布也未做任何限制。事实上,在获取经验p 值的过程中,我们采用是“就地取材”“管中窥豹”的思路,并未假设d 的分布函数; 另一个好处在于可以适用于各种令,如regress,xtreg, logit, ivregress 等,而suest 则只能应用于部分命令。
方法无优劣。无论选择哪种方法,都要预先审视一下是否符合这些检验方法的假设条件。

About 分组 

 1、比较回归系数:

  • 【Stata实现分组回归系数的比较】 https://www.bilibili.com/video/BV177411n77Q/?share_source=copy_web&vd_source=1a04067b7972e6e9d76e19b39910efc1
  • 面板只能用费舍尔

2、分(行业)中位数对企业进行分组 ≠ 整个样本的中位数

bysort year: egen m=median(x)    //按年份中位数分组
bysort sicda year: quantiles Z, gen(g_Z) n(2)        //按年份、行业中位数分组
egen mpg_mean=median(mpg)    //生成中位数

tbc.

### 如何在 Stata 中执行异质性检验 #### 使用交乘项进行异质性分析 为了研究不同群体之间的效应是否存在显著差异,在混合回归中可以引入所有变量与分组变量的交乘项,同时附加 `vce(robust)` 选项来应对可能存在的异方差问题[^3]。 ```stata * 假设 black 是分组变量,ttl_exp 是感兴趣的解释变量 reg y ttl_exp black c.ttl_exp#c.black x1 x2 x3 i.year, vce(robust) ``` 这里通过加入交互项 `c.ttl_exp#c.black` 来捕捉两个子群(如黑人和白人群体)对于工作经验回报率的不同影响。这种方法允许每个协变量在不同子样本中有不同的斜率参数。 #### 利用命令实现更复杂的异质性测试 当涉及到更加复杂的情况时,比如想要评估政策干预效果随时间变化的趋势或是探讨多个维度上的异质性响应模式,则可考虑采用专门设计用于此类目的的高级统计工具: - 对于结构化分位数函数估计的需求,存在名为 IVQREG2 的模块能够提供帮助[^2]; ```stata ssc install ivqreg2 ivqreg2 outcome (treatment = instrument), q(.5) controls(covariates) ``` 此命令适用于处理内生性的潜在问题并能给出特定分位点处因果关系强度的信息; - 如果目标是在匹配框架下比较处理前后均值之差,那么带有支持条件的支持向量机核密度平滑技术可能是合适的选择之一[^1]。 ```stata diff co2, t(treat) p(t) cov(so2 water) kernel id(id) support ``` 上述代码片段展示了如何利用双重差分法结合倾向得分匹配来进行稳健性验证以及探索环境因素对碳排放水平的影响机制。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值