打开程序时提示Unsupported Graphics Card如何解决?

问题描述

如下图所示,打开程序后,弹出提醒,Unsupported Graphics Card,然后无法打开程序。
在这里插入图片描述
提示的意思是:
你的显卡遇到问题。请确保你的显卡符合最低系统要求,并已安装了最新版的驱动程序。

解决方案1(非根治 但简单快速)

这个解决方案就是禁用你的独显,如果你急着用,怕麻烦,就用这个。
首先打开控制面板
在这里插入图片描述
然后点击“硬件和声音”
在这里插入图片描述
然后点击设备管理器。
在这里插入图片描述
找到你的显示适配器,注意,这个方法仅适用于有独显+核显的设备,如果只有独显没有核显,或只有核显,没有独显,是无法使用这个解决方案的。
在这里插入图片描述
找到独显,然后“右键单击” - “禁用设备”
在这里插入图片描述
在弹出的窗口选择“是”
在这里插入图片描述
接下来你就可以尝试打开你想要打开的程序了。
如果你只是偶尔弹出这个故障,并非一直有,那么等下次重新设备之后,再重新进入控制面板,然后点击“启用设备”,再打开程序一般也能打开了。
但如开头所述,此方法非根治,未来仍然会触发。
在这里插入图片描述

解决方案2

这个解决方案是下载最新驱动,此法可根治,但耗时略长,不如解决方案1迅速。
下载地址如下所示:

  1. NVIDIA驱动下载地址
  2. AMD驱动下载地址(不确定 大概是这个)
  3. Intel驱动下载地址

记住,在进行任何更改之前,备份重要数据是一个好习惯,以防万一操作过程中出现问题。
但我没备份,因为我感觉我不能出问题。
不过若你感觉有风险,最好备份一下之前的驱动。

Intel驱动更新

首先点击上面的下载地址,进入后,点击“立即下载”。
在这里插入图片描述
然后会下载一个程序,运行即可。之后会弹出一个网页,如下图所示。点击“下载”显卡驱动。
在这里插入图片描述
等下载结束后,点击“安装”
在这里插入图片描述
然后根据提示,安装即可。
在这里插入图片描述
最后会让你重启,重启之后,进入到Intel Arc Control,检察一下版本,如果不是最新版,就点击一下“快速安装”。

在这里插入图片描述
重新进入到Intel Driver & Support Assistant程序,点击左侧的“刷新结果”,观察是否还有可更新的提示,如果没有,那就更新结束了。
在这里插入图片描述
这时打开之前无法打开的程序,是可以正常打开的。

还不行

检查系统要求

首先,请确认你要运行的程序的系统要求,确保你的显卡型号满足这些要求。通常,这些信息可以在程序的官方网站上找到。

检查硬件问题

如果上述软件解决方案无效,可能是显卡本身存在故障或连接问题。确保显卡正确安装在主板上,所有连接都牢固无误。

考虑升级显卡

如果你的显卡确实不符合程序的最低要求,需要更换一块更强的显卡。

联系程序的技术支持

如果问题仍然无法解决,建议联系程序的客服或技术支持,提供详细的错误信息和你已经尝试的解决步骤,他们可能会提供更具体的帮助。

### NVIDIA GeForce RTX 4090 Compatible CUDA Version Installation Guide For the NVIDIA GeForce RTX 4090, ensuring compatibility between the GPU and CUDA versions is crucial to avoid issues such as unsupported compute capabilities. The GeForce RTX 4090 has a compute capability of `sm_89` which requires at least CUDA Toolkit version 12.0 or higher due to its advanced architecture features[^1]. When encountering errors like "GeForce RTX 3080 with CUDA capability sm_86 is not compatible," this indicates that the installed PyTorch (or similar software) does not support the specific compute capability of the hardware being used. For newer GPUs including those from the RTX 40 series, it's essential to verify both the CUDA toolkit and any dependent libraries are up-to-date[^2]. The installation process should proceed carefully considering existing drivers on your system: - **Preparation**: Before installing new CUDA toolkits, check if there’s an already present Nvidia driver by running commands related to checking installed packages. - **Driver Handling During Installation**: When executing the CUDA installer (`cuda_xxx.run`), users might receive notifications about pre-installed Nvidia drivers; these can be ignored safely during the setup procedure since you have control over selecting components within the installer interface where choosing only necessary parts while skipping driver updates may prevent conflicts[^3]. #### Example Command Line Instructions for Installing CUDA via .run File ```bash # Download appropriate CUDA package first then run below command sudo sh cuda_xxx.run --silent --toolkit --override ``` --related questions-- 1. What steps need attention when updating the CUDA toolkit alongside keeping my current graphics card driver? 2. How do I confirm whether my installed PyTorch matches the required specifications for supporting newer GPUs? 3. Can older versions of CUDA work efficiently with modern GPUs like the RTX 4090 without performance penalties? 4. Are there alternative methods besides using `.run` files to install CUDA toolkits specifically tailored towards certain GPU models? 5. In what scenarios would one choose to update their system's Nvidia driver along with a fresh CUDA installation rather than maintaining separate installations?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

水智

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值