【科研绘图】【分条热力图】:附Origin详细画图流程 + 案例分析

图片

目录

No.1 理解分条热力图

No.2 画图流程

1 导入数据,绘制图形

2 设置绘图细节

3 色阶控制

4 设置坐标轴

5 效果图

No.3 案例分析

1 案例一

2 案例二


No.1 理解分条热力图

  • 分条热力图,基于数据映射和颜色编码,是在热力图的基础上进一步细化和分条展示的数据可视化形式。
  • 将数据按照特定的逻辑或维度进行分组或分条处理,形成多个数据条带或区间。然后,根据每个条带或区间内的数据大小、密度或强度,通过颜色编码的方式将其映射到热力图上。颜色的深浅或变化直接反映了数据在不同条带或区间内的分布情况

No.2 画图流程

1 导入数据,绘制图形

  • 选中数据→点击“绘图”→点击“等高线图”→点击“分条热图”→弹出“Plotting:plotvm”对话框→点击“确定”

图片

图片

图片

### Origin 数据绘图关键点与技巧 #### 1. 数据导入与管理 有效利用Origin进行数据处理的第一步是熟练掌握如何导入和整理数据。支持多种文件格式的数据输入,包括Excel、CSV和其他文本文件[^1]。 #### 2. 表类型的选择 根据不同的研究需求选择合适的表形式至关重要。对于时间序列析适合采用折线;比较不同类别间差异则推荐柱状或箱形;展示比例关系可以考虑饼;探索变量间的关联性时散点尤为适用。 #### 3. 自定义形属性 为了使表更加直观易懂,在制作过程中可调整线颜色、宽度以及标记样式等视觉效果参数。此外还可以通过添加误差棒来反映测量不确定性,并设置坐标轴标签以增强解释力。 #### 4. 多层形组合 当需要在同一张片内表达多个维度的信息时,多层叠加是一个非常有用的策略。比如可以在背景上绘制热力布情况作为底,再在其之上覆盖轨迹路径或者点位置等细节特征。 #### 5. 动态更新机制 如果所使用的数据集会随时间变化而改变,则应该充利用Origin内置的支持动态链接外部数据库的功能特性,确保每次打开项目都能获取最新版本的数据并自动刷新视显示结果。 ```python import numpy as np from originpro import Worksheet, GraphPage # 创建工作表对象并将随机数填充进去 ws = Worksheet() data_x = np.linspace(0, 9, 10) data_y = np.random.rand(10) for i in range(len(data_x)): ws[i, 0].value = data_x[i] ws[i, 1].value = data_y[i] gp = GraphPage() # 新建一个空白的形页面实例化对象 layer = gp.add_plot_layer('line') # 添加一层用于画直线型曲线的新层 plot = layer.add_dataset(ws, (0, 1)) # 将之前准备好的两列数据加入到当前这层里边去形成具体的一实际可见的线段 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值