计算机视觉中的多视图几何<Part0—基础知识:射影几何、变换和估计>(4)

4. 算法评价和误差分析

评价和量化估计算法的结果,通常仅有一个变量或变换的估计是不够的,还需要进行置信度或不可靠性的度量(协方差)。

4.1 性能的界定

依据计算得到的模型与(有噪声的)输入数据的匹配程度,或估计得到的模型与原先无噪声的数据吻合程度来评价算法。

4.1.1 Error in one image

  • RMS残差:
    ε r e s = ( 1 2 n ∑ i = 1 n d ( x i ′ , x ^ i ′ ) 2 ) 1 / 2 \varepsilon_{res}=(\frac{1}{2n}\sum^n_{i=1}d(\textbf{x}'_i,\hat{\textbf{x}}'_i)^2)^{1/2} εres=(2n1i=1nd(xi,x^i)2)1/2
    残差值本身并不是解的质量的一个绝对度量,在渐近情况下方差应该反比例与匹配点数目而减少,与此同时残差将增加;

4.1.2 Error in both images

  • RMS残差:
    ε r e s = 1 4 n ( ∑ i = 1 n d ( x i , x ^ i ) 2 + ∑ i = 1 n d ( x i ′ , x ^ i ′ ) 2 ) 1 / 2 \varepsilon_{res}=\frac{1}{\sqrt{4n}}(\sum^n_{i=1}d(\textbf{x}_i,\hat{\textbf{x}}_i)^2+\sum^n_{i=1}d(\textbf{x}'_i,\hat{\textbf{x}}'_i)^2)^{1/2} εres=4n 1(i=1nd(xi,x^i)2+i=1nd(xi,x^i)2)1/2

4.1.3 Optimal estimators (MLE)

几何误差的最小化等于MLE,任何实现几何误差最小化的算法的目标应该是达到MLE给出的理论界,最小化其他不同代价函数的算法可以根据它与MLE所给出的界的接近程度来作性能判断。
一般的估计问题关系到一个由IRM到IRN的函数 f f f,其中IRM是参数空间,而IRN是测量空间。 f ( P ˉ ) = X ˉ f(\bar{P})=\bar{X} f(Pˉ)=Xˉ,当参数矢量 P P P的值在点 P ˉ \bar{P} Pˉ的领域变化时,函数 f ( P ) f(P) f(P)的值形成IRN中过点 X ˉ \bar{X} Xˉ的曲面 S M S_M SM(由 f f f的值域给出)是IRN的子流形,其维数是本质参数数目 d d d
在这里插入图片描述
给定测量矢量 X X X,最大似然(ML)估计 X ^ \hat{X} X^ S M S_M SM上的最接近 X X X的点,ML估计算法就是返回该曲面上离 X X X最近的点的算法,把这个ML估计为 X ^ \hat{X} X^( X X X到切平面上的垂足),残差则是点 X X X到估计值 X ^ \hat{X} X^的距离,而 X ^ \hat{X} X^ X ˉ \bar{X} Xˉ的距离是最佳估计值到真值的距离。
在这里插入图片描述
N维高斯分布的总方差是协方差矩阵的迹,即在每一个轴方向的方差的和;给定定义在IRN上的总方差是 N σ 2 N\sigma^2 Nσ2而均值是真值点 X ˉ \bar{X} Xˉ的各向同性高斯随机变量(独立),ML残差是该随机变量到过 X ˉ \bar{X} Xˉ的超平面(维数 d d d)的距离的期望值,IRN上的该高斯随机变量到 d d d维切平面的投影给出了估计误差的分布,而到该切平面的 ( N − d ) (N-d) (Nd)维的法曲面的投影给出残差的分布;IRN上总方差为 N σ 2 N\sigma^2 Nσ2的各向同性高斯分布向一个 s s s维子空间的投影是总方差为 s σ s\sigma sσ的各向同性高斯分布。

  • ML估计算法的RMS残差(测量值到估计值的距离):
    ε r e s = E [ ∣ ∣ X ^ − X ∣ ∣ / N ] 1 / 2 = σ ( 1 − d / N ) 1 / 2 \varepsilon_{res}=E[||\hat{X}-X||/N]^{1/2}=\sigma(1-d/N)^{1/2} εres=E[X^X/N]1/2=σ(1d/N)1/2
  • ML估计算法的RMS估计误差(估计值到真值的距离):
    ε e s t = E [ ∣ ∣ X ^ − X ˉ ∣ ∣ / N ] 1 / 2 = σ ( d / N ) 1 / 2 \varepsilon_{est}=E[||\hat{X}-\bar{X}||/N]^{1/2}=\sigma(d/N)^{1/2} εest=E[X^Xˉ/N]1/2=σ(d/N)1/2
    在这里插入图片描述

4.1.4 Determining the correct convergence of an algorithm

  • Pythagorean:
    ∣ ∣ X − X ˉ ∣ ∣ 2 = ∣ ∣ X − X ^ ∣ ∣ 2 + ∣ ∣ X ˉ − X ^ ∣ ∣ 2 ||X-\bar{X}||^2=||X-\hat{X}||^2+||\bar{X}-\hat{X}||^2 XXˉ2=XX^2+XˉX^2
    In evaluating an algorithm with synthetic data, this equality allows a simple test to see whether the algorithm has converged to the optimal value.

4.2 变化估计的协方差

变换估计的不可靠性取决与许多因素,包括用于计算的点数、给定的匹配点的准确度以及点的配置,不可靠性通常由变换的协方差矩阵获取。

4.2.1 Forward propagation of covariance

协方差矩阵在仿射变换下的简单性质:令 v \textbf{v} v是IRM中的一个具有均值 v ˉ \bar\textbf{v} vˉ和协方差矩阵 Σ \Sigma Σ的随机矢量,假定 f : I R M → I R N f:IR^M\rightarrow{IR^N} f:IRMIRN是一个仿射映射,定义为 f ( v ) = f ( v ˉ ) + A ( v − v ˉ ) f(\textbf{v})=f(\bar\textbf{v})+A(\textbf{v}-\bar\textbf{v}) f(v)=f(vˉ)+A(vvˉ),那么 f ( v ) f(\textbf{v}) f(v)是一个具有均值 f ( v ˉ ) f(\bar\textbf{v}) f(vˉ)和协方差矩阵 A Σ A ⊤ A\Sigma{A}^\top AΣA的随机变量。

  • 非线性传播:
    f ( v ) ≈ f ( v ˉ ) + J ( v − v ˉ ) f(\textbf{v})\approx{f(\bar\textbf{v})}+J(\textbf{v}-\bar\textbf{v}) f(v)f(vˉ)+J(vvˉ)
    v \textbf{v} v是IRM中的一个具有均值 v ˉ \bar\textbf{v} vˉ和协方差矩阵 Σ \Sigma Σ的随机矢量,假定 f : I R M → I R N f:IR^M\rightarrow{IR^N} f:IRMIRN v ˉ \bar\textbf{v} vˉ的邻域内可微,那么在精确到一阶近似的程度下, f ( v ) f(\textbf{v}) f(v)是一个具有均值 f ( v ˉ ) f(\bar\textbf{v}) f(vˉ)和协方差矩阵 J Σ J ⊤ J\Sigma{J}^\top JΣJ的随机变量,其中 J J J f f f的雅可比矩阵在 v ˉ \bar\textbf{v} vˉ的值。
    f ( x , y ) = a x 2 + b x y + c y 2 + d x + e y + f f(x,y)=ax^2+bxy+cy^2+dx+ey+f f(x,y)=ax2+bxy+cy2+dx+ey+f
    均值= a σ x 2 + c σ y 2 + f a\sigma^2_x+c\sigma^2_y+f aσx2+cσy2+f,方差= 2 a 2 σ x 4 + b 2 σ x 2 σ y 2 + 2 c 2 σ y 4 + d 2 σ x 2 + e 2 σ y 2 2a^2\sigma^4_x+b^2\sigma^2_x\sigma^2_y+2c^2\sigma^4_y+d^2\sigma^2_x+e^2\sigma^2_y 2a2σx4+b2σx2σy2+2c2σy4+d2σx2+e2σy2

4.2.2 Backward propagation of covariance

  • 协方差的反向输送——仿射情形:
    f : I R M → I R N f:IR^M\rightarrow{IR^N} f:IRMIRN是形为 f ( P ) = f ( P ˉ ) + J ( P − P ˉ ) f(P)={f(\bar{P})}+J(P-\bar{P}) f(P)=f(Pˉ)+J(PPˉ)的仿射映射,其中 J J J的秩等于 M M M,令 X X X是IRN中的一个具有均值 X ˉ = f ( P ˉ ) \bar{X}=f(\bar{P}) Xˉ=f(Pˉ)和协方差矩阵 Σ \Sigma Σ的随机变量,令 f − 1 o η ( X ) f^{-1}o\eta(X) f1oη(X)是一个具有均值 P ˉ \bar{P} Pˉ的随机变量,其协方差矩阵是 Σ P = ( J ⊤ Σ X − 1 J ) − 1 \Sigma_P=(J^\top\Sigma^{-1}_XJ)^{-1} ΣP=(JΣX1J)1,当 f f f不是仿射映射时,可以通过通常途径用一个仿射函数逼近 f f f来获得均值和方差的近似。
    ∣ ∣ X − X ^ ∣ ∣ Σ = ∣ ∣ X − f ( P ^ ) ∣ ∣ Σ = ∣ ∣ ( X − X ^ ) − J ( P ^ − P ˉ ) ∣ ∣ Σ ||X-\hat{X}||_\Sigma=||X-f(\hat{P})||_\Sigma=||(X-\hat{X})-J(\hat{P}-\bar{P})||_\Sigma XX^Σ=Xf(P^)Σ=(XX^)J(P^Pˉ)Σ
    ( P ^ − P ˉ ) = ( J ⊤ Σ − 1 J ) − 1 J ⊤ Σ − 1 ( X − X ˉ ) (\hat{P}-\bar{P})=(J^\top\Sigma^{-1}J)^{-1}J^\top\Sigma^{-1}(X-\bar{X}) (P^Pˉ)=(JΣ1J)1JΣ1(XXˉ)时被最小化, P ˉ = f − 1 X ˉ \bar{P}=f^{-1}\bar{X} Pˉ=f1Xˉ P ^ = f − 1 X ^ \hat{P}=f^{-1}\hat{X} P^=f1X^
    f − 1 o η ( X ) = P ^ = ( J ⊤ Σ − 1 J ) − 1 J ⊤ Σ − 1 ( X − X ˉ ) + f − 1 o η ( X ˉ ) f^{-1}o\eta(X)=\hat{P}=(J^\top\Sigma^{-1}J)^{-1}J^\top\Sigma^{-1}(X-\bar{X})+f^{-1}o\eta(\bar{X}) f1oη(X)=P^=(JΣ1J)1JΣ1(XXˉ)+f1oη(Xˉ)

4.2.3 Over-parametrization

超参数 f ( P ) ∼ f ( k P ) f(P)\thicksim{f(kP)} f(P)f(kP)情况下, Σ P = ( J ⊤ Σ X − 1 J ) − 1 \Sigma_P=(J^\top\Sigma^{-1}_XJ)^{-1} ΣP=(JΣX1J)1的秩 d d d(本质参数数)小于维数 M M M不可逆,通过 ∣ ∣ P ∣ ∣ = 1 ||P||=1 P=1等约束将被估计矢量固定在某个特定的子流行上。

  • 协方差的反向输送——超参数化情形:
    f : I R M → I R N f:IR^M\rightarrow{IR^N} f:IRMIRN是一个可微映射,它把一组参数 P ˉ \bar{P} Pˉ映射到测量矢量 X ˉ \bar{X} Xˉ,令 S P S_P SP是嵌入IRM中过点 P ˉ \bar{P} Pˉ d d d维光滑流形并使得映射 f f f在流形 S P S_P SP P ˉ \bar{P} Pˉ的一个邻域内是一一对应的, f f f S P S_P SP局域地映射到IRN上的流形 f ( S P ) f(S_P) f(SP),函数 f f f有一个局部逆函数 f − 1 f^{-1} f1,它限制在曲面 f ( S P ) f(S_P) f(SP) X ˉ \bar{X} Xˉ的一个邻域内,定义IRN上的一个具有均值 X ˉ \bar{X} Xˉ和协方差 Σ X \Sigma_X ΣX的高斯分布,并令 η : I R N → f ( S P ) \eta:IR^N\rightarrow{f(S_P)} η:IRNf(SP)把IRN上的点映射到 f ( S P ) f(S_P) f(SP)上并在Mahalanobis范数意义下最近的点,IRN上具有协方差矩阵 Σ X \Sigma_X ΣX的概率分布通过 f − 1 o η f^{-1}o\eta f1oη诱导IRM上的概率分布,它在一阶精度下的协方差矩阵是 Σ P = ( J ⊤ Σ X − 1 J ) + A \Sigma_P=(J^\top\Sigma^{-1}_XJ)^{+A} ΣP=(JΣX1J)+A,其中 A A A是任意 m × d m\times{d} m×d矩阵,它的列矢量生成 S P S_P SP的过点 P ˉ \bar{P} Pˉ的切空间(参数空间的约束子空间)。
    在这里插入图片描述
    令可微映射 f : I R M → I R N f:IR^M\rightarrow{IR^N} f:IRMIRN P ˉ \bar{P} Pˉ映射到 X ˉ \bar{X} Xˉ,并令 J J J f f f的雅可比矩阵,设IRN上一个具有协方差矩阵 Σ X \Sigma_X ΣX的高斯分布定义在 X ˉ \bar{X} Xˉ,同时 f − 1 o η : I R N → I R M f^{-1}o\eta:IR^N\rightarrow{IR^M} f1oη:IRNIRM是把一个测量 X X X映到约束在局部正交于 J J J的零空间的曲面 S P S_P SP上的MLE参数矢量 P P P的映射,那么 f − 1 o η f^{-1}o\eta f1oη诱导在IRM上的一个分布,它的协方差矩阵在一阶精度下是 Σ P = ( J ⊤ Σ X − 1 J ) + \Sigma_P=(J^\top\Sigma^{-1}_XJ)^+ ΣP=(JΣX1J)+。(齐次矢量)

4.2.4 Application and examples

计算一个被估计的变换的协方差矩阵的过程如下:
(1) 由给定数据计算变换 H ^ \hat{H} H^
(2) 计算雅可比矩阵 J f = ∂ X ′ / ∂ h J_f=\partial{X}'/\partial{\textbf{h}} Jf=X/h h ^ \hat\textbf{h} h^处的值;
(3) 估计 h \textbf{h} h的协方差矩阵 Σ h = ( J f ⊤ Σ X ′ − 1 J f ) + \Sigma_\textbf{h}=(J^\top_f\Sigma^{-1}_{X'}J_f)^+ Σh=(JfΣX1Jf)+
利用Householder矩阵可以确定约束曲面的切平面, A h = 0 Ah=0 Ah=0

4.2.5 Error in both images

J ⊤ Σ X − 1 J = [ A ⊤ Σ X − 1 A A ⊤ Σ X − 1 B B ⊤ Σ X − 1 A B ⊤ Σ X − 1 B ] J^\top\Sigma^{-1}_XJ= \left[ \begin{array}{cc} A^\top\Sigma^{-1}_XA && A^\top\Sigma^{-1}_XB\\ B^\top\Sigma^{-1}_XA && B^\top\Sigma^{-1}_XB \end{array} \right] JΣX1J=[AΣX1ABΣX1AAΣX1BBΣX1B]

4.2.6 Using the covariance matrix in point transfer

H H H的协方差矩阵可以计算点转移中的不可靠性:
Σ x ′ = J h Σ h J h ⊤ , J h = ∂ x ′ / ∂ h \Sigma_{\textbf{x}'}=J_\textbf{h}\Sigma_\textbf{h}J_\textbf{h}^\top,J_\textbf{h}=\partial\textbf{x}'/\partial\textbf{h} Σx=JhΣhJhJh=x/h
Σ x ′ = J h Σ h J h ⊤ + J x Σ x J x ⊤ , J x = ∂ x ′ / ∂ x \Sigma_{\textbf{x}'}=J_\textbf{h}\Sigma_\textbf{h}J_\textbf{h}^\top+J_\textbf{x}\Sigma_\textbf{x}J_\textbf{x}^\top,J_\textbf{x}=\partial\textbf{x}'/\partial\textbf{x} Σx=JhΣhJh+JxΣxJxJx=x/x
点转移的RMS不可靠性等于 t r a c e ( Σ x ′ ) = ( σ x ′ x ′ + σ y ′ y ′ ) \sqrt{trace(\Sigma_{\textbf{x}'})}=(\sigma_{x'x'}+\sigma_{y'y'}) trace(Σx) =(σxx+σyy),取决于径向距离 r r r
在这里插入图片描述

4.3 协方差估计的蒙特卡洛法

当真值不存在时,可以用估计值当作匹配数据点和变换真值来计算协方差,假定数据点的真值与被估计值非常接近。

4.4 总结

  1. 利用数据的协方差矩阵,可以推导出模型残差和估计误差;
  2. 根据数据的协方差矩阵,结合协方差正向及反向传播原理计算模型协方差矩阵,用来评测变换估计的不可靠性。
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值