Lagent
1、环境安装完成
2、Lagent Web demo使用arxiv成功
- 如果勾选数据分析,则会倾向于使用python解释器,输出代码结果
3.使用自定义的天气API,和风天气,插件选择weather query
- 显存占用大概17G,成功运行
- 可以回答今日全球各地天气,无法回答过去或者未来的天气;存在理解错的可能,南京理解为南宁
- 有点像InternLM理解输入的意思后,去调用相关的工具包
AgentLego
1、直接使用成功,输出物体类别和坐标,输出识别结果图
2、作为智能体工具使用
- agent load成功
- tool load成功
- 显存消耗17G左右,运行成功
- 因为是用的rtmdet-large预训练模型,所以无法检测预训练数据集中不存在的物体
- 小目标检测能力一般
- 对于身份回答有agent作为助手的概念
3、自定义使用
- magicmaker使用成功。
- 注册新tool的过程和mmdet差不多,都需要添加文件和在
__init__.py
文件中修改。 - 在tool选择中,单独选一个,效果最好。但需要start new chat刷新几次。
4、总结使用方法
- 都需要打开lmdeploy和agent两个终端。lmdeploy用于部署LLM,agent用于集成工具。
- web打开的是agent web ui。
- agent会整合lmdeploy的部署结果(终端)以及已经注册过的tool。