Winner2008激光粒度分析仪

操作规程:

1.仪器开机预热10到15分钟,把测试样品和水准备好。

2.桌面上双击打开2008软件,在“信息设置”中,填写样品信息及测试信息;点击“连接”,使仪器和软件进行连接。

3.打开控制端,点击“进水”,进水完毕;点击“排气泡”,把管道中气泡排出。

4.点击开启“循环” “超声” ,点击“B”背景测试,背景平滑稳定,平均次数到10后,点击“R”进入能普测试。(背景要求第一环最高,一二三环依次下降,后面整体比较平滑。)

5.加入样品,样品光学浓度控制在10到30之间。

6.当浓度及D50数值比较稳定时(加入样品后不用等太长时间),点击“保存数据”,数据保存到二三十条以后,双击测试界面停止保存数据并弹出所记录的数据。

7.点击关闭“循环” “超声” ,点击“排水”,排水结束,点击“冲洗”。

8.处理数据,选择一段D50连续稳定的数据取平均值,生成平均值报告,打印或者导出报告,测试结束。

注意事项:

1.在仪器里面没有介质的情况下(水或者酒精),禁止开启“循环” “超声” “排水”“自动对中”。

2.背景不平稳时需要清洗样品窗或者光路自动对中。

3.仪器中间间隔一小时不用要及时关机。

4.样品不好分散时需要加入分散剂或者在外部进行分散。

5.一定点R后再加样品。

(1、背景值中间值过高的主要影响因素就是水质、水温和空气湿度。2、使用过滤的或者纯化的水测,安个那种厨房的净水机就够用,没有水垢就行。3、另外背景高的时候可以进水,加两瓶盖酒精,多排气泡气泡,点冲洗、可以把脏东西冲洗掉一部分,因为有时候管道里有残留物,仅仅清洗样品窗是不够的。)

内容概要:本文介绍了一种利用遗传算法优化BP神经网络进行回归预测的方法,并提供了完整的MATLAB程序代码。主要内容包括数据预处理、遗传算法与BP神经网络的结合、适应度函数的设计以及最终的预测结果展示。文中详细解释了如何将Excel格式的数据导入MATLAB并进行归一化处理,如何定义适应度函数来优化BP神经网络的参数(如激活函数和学习率),并通过遗传算法找到最优解。实验结果显示,在某工业数据集上,经过遗传算法优化后的BP神经网络预测精度显著提高,从原来的0.82提升到了0.91。此外,还提到了一些实用技巧,比如调整遗传代数、修改激活函数等方法进一步改进模型性能。 适合人群:对机器学习有一定了解的研究人员和技术爱好者,特别是那些希望深入了解遗传算法与BP神经网络结合应用的人士。 使用场景及目标:适用于需要快速构建高效回归预测模型的场景,尤其是当传统BP神经网络无法达到预期效果时。通过本篇文章的学习,读者能够掌握一种有效的优化手段,从而提高模型的泛化能力和预测准确性。 其他说明:代码可以直接应用于新的数据集,只需确保数据格式符合要求(Excel格式)。对于想要深入探索或改进现有模型的人来说,还可以尝试更换不同的激活函数或其他调节方式来获得更好的表现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

生态笔记

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值