上次我们讲解了如何在单只股票上进行向量化回测:
https://blog.csdn.net/weixin_44566452/article/details/123493077
现在我们要讲这个方法推广到全市场,一次性在所有股票上测试我们的策略。
上次我们提到,向量化回测需要的材料有:
1. 收益率矩阵
2. 策略条件矩阵
那么如果我们希望在全市场的股票上测试,就需要拥有全市场股票的收益率矩阵和策略条件矩阵。
这里我们同样采用加减乘除的方式,先计算收益率矩阵:
然后计算策略条件矩阵,我们这里依旧采用十天均线的方式来设计:
很好,使用十天均线这个策略,让我们死的非常惨。
通过描述性统计我们发现存在一些异常值,如max=0.52,这些都是有待查明的(我猜测是新股之类的?)
至此,我们可以通过多条件矩阵相乘,进行股票的筛选。
例如,我会对全市场股票进行基本的筛选:
反正基本上都是在设计01矩阵而已,我自己写了一些函数。
下一篇文章,我会介绍如何利用pivot、stack和unstack来重构数据,转换成我们需要的模式。