Latex符号、公式

转义字符

$ # % & ~ _ ^ \ { }

运算

取整: ⌈ 3 ⌉ ⌊ 1 2 ⌋ \biggl\lceil 3\biggr\rceil\qquad \biggl\lfloor\frac12\biggr\rfloor 321
\biggl\lceil 3 \biggr\rceil\qquad
\biggl\lfloor\frac12\biggr\rfloor
⌈ x ⌉ \lceil x \rceil x ⌊ x ⌋ \lfloor x \rfloor x :\lceil x \rceil \lfloor x \rfloor

点乘:a \cdot b ⋅ \cdot
叉乘:a \times b × \times ×
点除:a \div b ÷ \div ÷
拼接:a \oplus b ⊕ \oplus

逻辑

合取: ∧ \wedge \wedge
析取: ∨ \vee \vee
否定: ¬ \neg ¬ \neg

集合

并集: ∪ \cup \cup
交集: ∩ \cap \cap
集合减: ∖ \setminus \ \backslash \ \setminus \backslash
箭头: ← → ← → \larr \rarr \leftarrow \to \larr \rarr \leftarrow \to
乘法: ∘ \circ \circ

数学

帽子: x ^ \hat{x} x^ \hat{}
符号: λ \lambda λ \lambda
无穷: ∞ \infty \infty
积分 : ∫ − N N e x   d x \int_{-N}^{N} e^x\, dx NNexdx \int_{-N}^{N} e^x, dx
不等号 ≠ \neq = \neq (not equal)
约等于: ≈ \approx \approx
小于等于 大于等于 ≤ \le ≥ \ge \le \ge
分数: a b \frac{a}{b} ba \frac{a}{b}
省略: ⋅ a n d ⋯ \cdot and\cdots and \cdot \cdots
极限,求和: lim ⁡ x → ∞ f ( x ) = ∑ j = 1 M \lim_{x\to\infty} f(x)=\sum\limits_{j=1}^{M} xlimf(x)=j=1M \lim_{x\to\infty} f(x) 【两个$ 单独一行】
\sum\limits_{j=1}^{M}

ϕ , φ \phi,\varphi ϕ,φ \phi,\varphi

矩阵:自适应中括号 [ A A A ] \left[AAA\right] [AAA] \left[ \right] \left{ \right}
[ ∑ i = 1 n ] ( ∑ i = 1 n ) { ∑ i = 1 n } \left[\sum_{i=1}^n\right] \left(\sum_{i=1}^n\right) \left\{\sum_{i=1}^n\right\} [i=1n](i=1n){i=1n}

样式

粗体: V \mathbf V V \mathbf V
空心化: R \mathbb R R \mathbb R,指示函数 I \mathbb I I 空心化 I I I
花体?: E , F \mathcal E,\mathcal F E,F \mathcal E,\mathcal F

平均
上划线: a b c ‾ \overline{abc} abc 全部 \overline{abc} a ˉ \bar a aˉ 单个 \bar a

函数

f ( x ) = { x = cos ⁡ ( t ) y = sin ⁡ ( t ) z = x y f(x)=\left\{ \begin{aligned} x & = & \cos(t) \\ y & = & \sin(t) \\ z & = & \frac xy \end{aligned} \right. f(x)=xyz===cos(t)sin(t)yx

f(x)=\left\{
\begin{aligned}
x & = & \cos(t) \\
y & = & \sin(t) \\
z & = & \frac xy
\end{aligned}
\right.

矩阵

0 1 1 0 ( 0 − i i 0 ) [ 0 − 1 1 0 ] { 1 0 0 − 1 } ∣ a b c d ∣ ∥ i 0 0 − i ∥ \begin{gathered} \begin{matrix} 0 & 1 \\ 1 & 0 \end{matrix} \quad \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \quad \begin{Bmatrix} 1 & 0 \\ 0 & -1 \end{Bmatrix} \quad \begin{vmatrix} a & b \\ c & d \end{vmatrix} \quad \begin{Vmatrix} i & 0 \\ 0 & -i \end{Vmatrix} \end{gathered} 0110(0ii0)[0110]{1001}acbdi00i

\begin{gathered}
\begin{matrix} 0 & 1 \\ 1 & 0 \end{matrix}
\quad
\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}
\quad
\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}
\quad
\begin{Bmatrix} 1 & 0 \\ 0 & -1 \end{Bmatrix}
\quad
\begin{vmatrix} a & b \\ c & d \end{vmatrix}
\quad
\begin{Vmatrix} i & 0 \\ 0 & -i \end{Vmatrix}
\end{gathered}
### 如何在LaTeX中加粗数学公式符号LaTeX中,可以通过使用 `\boldmath` 命令来使数学符号和方程变粗。此命令应在数学模式之外使用。例如: ```latex \textbf{Bold text and {\boldmath $x+y=z$}} ``` 上述代码会将文本中的 `$x+y=z$` 部分以粗体显示[^1]。 对于更复杂的表达式同样适用,只需确保 `\boldmath` 被放置于适当位置即可达到预期效果。需要注意的是,在应用该方法时应保持其位于非数学环境中,即不在美元符号内部调用它。 另外一种方式是在特定情况下利用 `bm` 包提供的功能,这允许更加灵活地处理向量和其他类型的变量。加载这个包后就可以通过如下形式获得更好的视觉呈现: ```latex \usepackage{bm} ... $\bm{x}+\bm{y}=\bm{z}$ ``` 这种方式不仅限定了作用范围而且提供了更为一致的表现力[^3]。 #### 使用示例对比两种方法的效果差异 - **仅使用`\boldmath`:** ```latex \documentclass{article} \begin{document} Before switching to bold math:\\ Normal equation: \(a+b=c\)\\ Switching now...{\boldmath\(a+b=c\)}\\ % Note how we switch back after Back to normal:\\ Another regular expression: \(d+e=f\) \end{document} ``` - **引入`bm`宏包并采用相应语法:** ```latex \documentclass{article} \usepackage{bm} \begin{document} Using bm package for selective bolding within an equation: Regular part plus $\bm{bold}$ parts like vectors or matrices. A more complex case with multiple elements being emphasized: \[ g(x)=\int_a^b f(t)\,\mathrm dt + \sum_i^n h(i)+\prod_j m(j)-\log(\sin x)+\cos(\tan^{-1}\sqrt{x})-\lim_{n\to0}(nx)^{-1/n}. \] Now all these components are made bold selectively using the same approach as before but inside this single formula. Notice that only those marked by '\bm' become thicker while others remain unchanged. \end{document} ``` 这两种技术各有优劣;前者简单直接但全局影响较大,后者则提供细粒度控制却稍微复杂一点。选择取决于具体应用场景和个人偏好[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值