多元时间序列因果关系分析研究综述

Granger因果分析基本方法

 

目录

Granger因果分析基本方法

条件 Granger 因果模型

多元混沌时间序列因果分析

高维时间序列的因果分析

Lasso-Granger因果模型

非线性Granger因果模型


Granger因果关系分析作为一种判别二元时间序列之间是否存在因果关系的方法
基本思想: 若采用时间序列X和Y的历史信息对Y进行预测, 优于仅采用Y的历史信息对Y进行预测的结果, 即时间序列X有助于解释时间序列Y的未来变化趋势, 那么时间序列X是时间序列Y的Granger原因. 建立如下两个向量自回归(Vector autoregressive, VAR)模型:

m为模型的阶数,回归预测结果, 通过比较VAR模型残差的方差大小, 判断X→YX→Y是否存在Granger因果关系, Granger因果指数(Granger causality index, GCI)定义为

当上式为正时说明存在由X到Y的granger因果关系。应用前提是时间序列是平稳序列,否则可能出现为虚假回归结果。上式只能处理线性关系,非线性关系的研究模型如下:
用于分析多变量、非线性系统的因果关系, 包括条件Granger因果模型、Lasso-Granger因果模型、非线性Granger因果模型和频域Granger因果模型等, 具体如表1所示.

条件 Granger 因果模型

传统的Granger因果模型仅用于分析两个变量之间的因果关系, 对于多变量系统的因果分析, 通常不考虑多个变量之间的关联关系, 直接转化为多个二变量问题进行分析. 然而, 多变量系统的变量之间存在直接或间接的联系, 在分析任意两个变量因果关系时, 可能存在中间变量的影响, 此时传统的Granger因果模型容易产生虚假因果. 为了解决上述问题, Geweke[23]提出了条件Granger因果分析方法, 引入条件变量, 建立两个VAR模型:

其中, Z表示条件变量. 条件Granger因果指数(Conditional Granger causality index, CGCI)定义为

条件Granger因果模型建立在多变量回归模型基础上, 通过将条件变量加入到回归模型中, 有效区分变量的直接和间接联系, 得到直接因果关系.

多元混沌时间序列因果分析

    非线性预测思想,条件扩展Granger因果指数(Conditional extended Granger causality index, CEGCI)

高维时间序列的因果分析

    延迟变量选择策略, 限制VAR模型的阶数,限制条件Granger因果指数(Restricted conditional Granger causality index, RCGCI)(解决了了大量观测变量的系统中计算复杂的问题)

Lasso-Granger因果模型

针对高维变量Granger因果分析问题,

Lasso-Granger因果模型:

根据输入变量选择的结果识别Granger因果关系,

基本思想: 应用全部输入变量进行Lasso回归, 根据模型回归系数识别Granger因果关系的强弱. 目标函数如下所示:

其中, Y为预测变量, XX为全部输入变量, αα为回归系数, λλ为正则化参数, 用于控制惩罚项大小.

判别:如果时间序列Xj对应的系数αj为零或接近于零, 则表明时间序列Xj→Y不存在Granger因果关系, 反之则存在Granger因果关系.

优点:Lasso-Granger因果模型通过建立一个回归模型, 分析出全部输入变量对预测变量的因果关系, 大大缩减了计算量.

Lasso-Granger因果模型, 能够准确估计时间序列回归模型的阶数,

优点:提高模型的计算准确度. 为避免群组效应。

Grouped-Lasso-Granger因果模型

优点:能够减少错误因果关系的产生.

Grouped-Lasso非线性条件Granger因果模型:

该方法利用不同集合的径向基函数近似非线性关系, 并结合群组变量选择算法, 将Lasso-Granger因果模型扩展到非线性复杂网络重构.

非线性Granger因果模型

作用:分析非线性因果关系

  1. 基于径向基函数(Radial basis functions, RBF)的非线性预测模型:用于衡量二变量之间的非线性Granger因果关系. 建立如下两个回归模型:

 

其中, vv, w1w1, w2w2为模型系数, Xt=[Xt,Xt−1,⋯,Xt−m+1]和Yt=[Yt,Yt−1,⋯,Yt−m+1] 表示时间序列X和Y的历史信息, ΨΨ和ΨΨ为径向基函数. 通过判断模型残差的方差大小, 可以分析是否存在非线性Granger因果关系.

  1. 基于核方法的非线性Granger因果模型, 在再生核Hilbert空间中进行线性Granger因果检测, 根据核函数映射实现线性到非线性的转换. 该方法的关键在于核函数的选择, 经过核函数的内积运算, 很容易实现高维变量的因果关系分析。

  2. 基于核典型相关分析(Kernel canonical correlation analysis, KCCA)的非线性Granger因果模型, 同样在典型相关分析的基础上引入了核映射, 使得该方法具有处理多变量、非线性系统因果关系的能力.

  3. 基于Copula的Granger因果模型, 成功应用于非线性、多变量系统因果分析. 该方法是一种非参数模型方法, 基于Granger因果分析的基本思想, 应用Copula函数描述系统的条件概率分布, 实现因果关系分析.

  4. 基于神经网络(Neural networks, NN)的Granger因果模型, 该方法不需要任何先验假设条件, 直接根据神经网络模型的预测结果判断因果关系.

频域Granger因果模型

作用:频域中能够更好地描述神经动力学系统。

  1. 第一个频域Granger因果模型, 首先建立多变量VAR模型, 经过傅里叶变换将时域模型转换为频域模型, 进而分析因果关系.

  2. 在前面模型的基础上, 引入了线性变化, 得到了简化的频域Granger因果模型.

  3. 另一种频域因果模型—偏定向相干性(Partial directed coherence, PDC), 该方法将包含K个变量的VAR模型系数进行傅里叶变换, 定义时间序列Xj→XiXj→Xi的因果关系为

  1. 其中, Z表示条件变量, A(f)A(f)为VAR模型系数的傅里叶变换, A¯i,j(f)A¯i,j(f)为矩阵A¯(f)=I−A(f)A¯(f)=I−A(f)的对应元素.

  2. 判别:

表示在频率f下Xj→XiXj→Xi的因果关系, 结果归一化到[0,1][0,1]之间, 其值接近于0表示无因果关系, 大于一定的阈值表明有因果关系.

  1. 直接传递函数(Directed transfer function, DTF)方法, 同样在频域分析因果关系. 与PDC模型类似, DTF对建立的VAR模型系数进行傅里叶变换, 定义H(f)=A−1(f)H(f)=A−1(f)为传递系数矩阵, 则时间序列Xj→XiXj→Xi的因果关系为

 

其中,为矩阵H(f)的对应元素. DTF描述在频率f下时间序列Xj→Xi的直接因果关系. 

参考文献在我的另一篇blog中~

  • 1
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值