如何在ubuntu上安装多个CUDA版本并且便于切换解决方案

本文详细指导如何在Ubuntu系统中同时安装并管理CUDA 10.0和10.1版本,包括下载、安装步骤、环境变量配置,以及切换版本的便捷方法,确保高效开发环境切换。
部署运行你感兴趣的模型镜像

如何在ubuntu上安装多个CUDA版本并且便于切换解决方案

假设电脑已经安装了cuda 10.1,现在想要去安装cuda10.0版本(下面使用的图像部分来源于网络,如有侵权,联系我删掉)

1.首先去官网下载cuda10.0 注意下载的类型选择runfile(local)文件 链接:https://developer.nvidia.com/cuda-zone
在这里插入图片描述
2.去官网下载cudnn7.6.5 注意下载的是一个压缩包文件 链接:https://developer.nvidia.com/rdp/cudnn-download
在这里插入图片描述
3.安装CUDA10.0
到下载的cuda10.0文件目录下

sudo chmod a+x cuda_10.0.130_410.48_linux.run #获取权限
sudo sh cuda_10.0.130_410.48_linux.run #注意一定要用sudo sh命令,避免到时候默认路径选择需要root权限

安装进程如下:(注意,由于你已经安装了一个cuda版本,驱动不需要装,所以在安装驱动时要选择no)
在这里插入图片描述

4.修改环境设置
输入:

sudo gedit ~/.bashrc

在文件下面加上以下内容(由于我们之前安装cuda10.1版本时就已经加入了下面的环境信息,但是是指定版本的,为了便于软连接切换,需要将版本信息去掉,更改为下面的内容)


export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/lib64
export PATH=$PATH:/usr/local/cuda/bin
export CUDA_HOME=$CUDA_HOME:/usr/local/cuda

配置完后更新一下文件

source ~/.bashrc

5.安装cudnn
解压之前下载的压缩包,里面是一个cuda文件夹。进入cuda文件夹右键选择在终端打开,然后输入下面信息

sudo cp include/cudnn.h /usr/local/cuda/include/
sudo cp lib64/libcudnn* /usr/local/cuda/lib64/
sudo chmod a+r /usr/local/cuda/include/cudnn.h 
sudo chmod a+r /usr/local/cuda/lib64/libcudnn*

6.切换CUDA版本操作
删除之前的软连接,建立你想要的版本链接
例如从cuda10.1切换到10.0


sudo rm -rf cuda
sudo ln -s /usr/local/cuda-10.0 /usr/local/cuda

如果想切换回cuda10.1,同样的操作即可,如下:


sudo rm -rf cuda
sudo ln -s /usr/local/cuda-10.1 /usr/local/cuda

7.查看cuda版本是否变换成功

nvcc -V

8.查看cudnn版本是否变换成功

cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2

您可能感兴趣的与本文相关的镜像

PyTorch 2.9

PyTorch 2.9

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

创创大帝(水印很浅-下载的文档)

原创不易,小钱也是爱

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值