《矩阵论》总结

前言:

《矩阵论》更像进阶版的线性代数,是一门高级数学。

  • 《线性代数》运算的对象是:常数。
  • 《矩阵论》运算的对象是:矩阵。

这门学科使得数学更加贴近于生活。小白将研究生阶段学习的《矩阵论与数理统计——理论及其工程应用》中“矩阵论”部分的提纲列写在下面。既可以梳理知识点,也为后面的复习巩固查阅使用做些笔记。


一.矩阵运算与矩阵分解

1.矩阵及其基本运算

  • 矩阵的初等变换.

矩阵的初等变换:

  1. 求逆矩阵;
  2. 解矩阵方程;
  3. 求矩阵的行最简型;
  4. 求矩阵和向量组的秩;
  5. 求向量组的极大线性无关组;
  6. 解线性方程组.

2.矩阵分解及其在解线性方程组中的应用

  • 矩阵的三角分解;

矩阵的三角分解:

  1. LU分解;
  2. LDU分解;
  3. 楚列斯基分解(GG^{T});
  4. 推广楚列斯基分解(LDL^{T});
  5. 矩阵的正交三角分解(QR)
  • 矩阵的满秩分解(A=BC);
  • 矩阵的奇异值分解.

3.矩阵的特征值与特征向量

  • 特征值的估计(圆盘定理).

4.矩阵的广义逆及其应用

  • 广义逆矩阵(A^{-});
  • 应用减号逆解方程组通解;
  • 广义逆矩阵(A^{+} = C^{H}(CC^{H})^{-1}(B^{H}B)^{-1}B^{H});
  • 应用加号逆求方程组的极小范数最小二乘解.

二.线性空间与线性变换

1.线性空间

  • 集合与映射;
  • 线性空间;

线性空间映射 T_{1},T_{2} 满足下列运算律:

  1. T_{1}(\alpha ,\beta ) = T_{1}(\beta,\alpha );
  2. T_{1}({T_{1}(\alpha ,\beta ),\gamma) = T_{1}({T_{1}(\alpha),T_{1}(\beta,\gamma ))
  3. V 中存在一个零元素,记作 0,对于 V 中每一个元素\alpha,都有T_{1}(0,\alpha ) = \alpha;
  4. 对于 V 中每一个元素 \alpha,在 V中存在一个元素 \alpha ^{'},使得 T_{1}(\alpha ,\alpha ^{'}) = 0,这样的 \alpha ^{'} 叫做 \alpha的负元素,记作\alpha ^{'} = -\alpha;
  5. T_{2}( k ,T_{1}(\alpha ,\beta )) = T_{2}(k,\alpha) + T_{2}(k , \beta );
  6. T_{2}( k+\lambda ,\alpha) = T_{2}(k,\alpha) + T_{2}(\lambda , \alpha )
  7. T_{2}( k\lambda ,\alpha) = T_{2}(k,T_{2}(\lambda , \alpha ));
  8. T_{2}( 1 ,\alpha) =\alpha.

其中 \alpha ,\beta ,\gamma 是 V 中的任何元素,k,\lambda 是 P 中的元素。

*交换、结合、分配、零无、负无。

  • 线性空间的基、维数与坐标;
  1. 线性组合;
  2. 线性表示;
  3. 线性相关性;
  4. 极大线性无关组;
  5. 过度矩阵;
  • 线性子空间(封闭性:加法、数乘);
  • 子空间的 交与和;

2.赋范线性空间与矩阵范数

  • 赋范线性空间

赋范线性空间满足下列条件:

  1. 正定条件:N(\alpha )\geq 0,N(\alpha ) = 0,当且仅当 \alpha =0; ;
  2. 非负齐次条件:N(k\alpha ) = \mid k\mid N(\alpha ), \forall k\epsilon p,\alpha \epsilon V;
  3. 三角不等式:N(\alpha +\beta )\leq N(\alpha ) + N(\beta).

* 习惯上记 N(\alpha )= \parallel \alpha \parallel.

  • 矩阵的范数

矩阵范数满足下列条件:

  1. 正定条件:N(A)\geq 0,N(A ) = 0,当且仅当 A=0; ;
  2. 非负齐次条件:N(kA ) = \mid k\mid N(A ), \forall k\epsilon p,A \epsilon \Re ^{n\times n};
  3. 三角不等式:N(A +B )\leq N(A ) + N(B).

* 习惯上记 N(A )= \parallel A \parallel.

常见的矩阵范数:

\parallel A \parallel_{1},\parallel A \parallel_{2},\parallel A \parallel_{\infty },\parallel A \parallel_{F}.

3.内积空间

  • 内积的定义与性质
  1. 对称性:(\alpha ,\beta )=(\beta,\alpha );
  2. 线性性:(\alpha +\beta,\gamma )=(\alpha,\beta +\gamma ),(k\alpha,\beta )=k(\alpha,\beta );
  3. 正定性:(\alpha ,\alpha )\geq 0,当且仅当 \alpha =0 时,(\alpha ,\alpha )= 0.
  • 向量的正交性与施密特(Schmidt)正交化方法(及“推广”)

4.矩阵分析初步

  • 矩阵序列的极限;
  • 矩阵级数;
  • 矩阵幂级数(方阵);
  • 矩阵的微分和积分;

5.线性变换

  • 线性变换的定义与性质
  1. R(f)=[f(x))=(),x\varepsilon \Re ^{n\times n}]\subset \Re ^{n\times n}
  2. N(f)=[X\mid f(x)=()=0]\subset \Re ^{n\times n}
  • 线性变换与矩阵
  • 线性变换的特征值与特征向量;
  • 正交变换.

三.矩阵的若尔当标准型与矩阵函数

1.\gamma 矩阵及其史密斯(Smith)标准型

史密斯标准型:

                       其中 d_{i}(\lambda ) 是首项系数为1的多项式,并且 d_{i}(\lambda ) 能够整除 d_{i+1}(\lambda )。(i=1,2,... ,r-1)

(*也就是对角线次数逐渐增高。)

行列式因式、不变因式、初等因式。

2.矩阵的若尔当标准型

3.最小多项式

定义:矩阵 A 的所有零化多项式中,次数最低,并且首相系数为1的零化多项式,称为 A 的最小多项式。

  • 初等因子
  • 不变因子

4.矩阵函数

5.应用案例

  • 矩阵函数在求解电路暂态相应中的应用;
  • 线性系统的能观性与能控性;
  • 一阶线性常系数微分方程组和高阶线性常微分方程的初值问题的求解
  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 矩阵论是机器学习中的重要理论基础之一。矩阵是一个由数字组成的矩形阵列,它们在机器学习中被广泛用于表示和处理数据。矩阵论提供了一套数学工具和算法,用于研究和操作矩阵数据。在机器学习中,矩阵论被用于处理特征向量和协方差矩阵,用于降维、分类和聚类等任务。 在矩阵论中,有一些基本的运算和概念,例如矩阵的加法、减法和乘法。矩阵的加法和减法是对应元素相加和相减,而矩阵的乘法是根据一定规则将两个矩阵相乘,得到一个新的矩阵。此外,矩阵的转置也是一个常见的操作,它将矩阵的行和列互换。 矩阵论的一个重要应用是主成分分析(PCA)。PCA是一种常用的降维技术,用于提取数据中的主要特征。PCA通过计算数据的协方差矩阵的特征向量,并选择其中最重要的一部分作为新的特征向量,从而实现数据的降维。 此外,在机器学习中,矩阵论还与线性回归、逻辑回归、神经网络及深度学习等算法密切相关。这些算法中的参数估计和模型训练都可以通过矩阵计算来实现。 总结来说,矩阵论在机器学习中扮演着重要的角色,它为我们提供了一套数学工具和算法,用于处理和分析数据。通过矩阵论,我们可以理解和应用各种机器学习算法,从而实现对数据的建模和预测。csdn网盘上有许多与机器学习和矩阵论相关的资源,可以提供更深入的学习和研究。 ### 回答2: 机器学习中的矩阵论是一个非常重要的数学工具和技术。矩阵是一个由数值排列成的矩形阵列,具有行和列的结构。在机器学习中,我们使用矩阵来表示数据集或特征矩阵,通过对矩阵进行各种操作,可以帮助我们理解和处理数据。 在机器学习中,矩阵论有以下几个重要的应用: 1. 矩阵运算:机器学习中的很多算法和模型都涉及到矩阵的运算,比如矩阵的加法、减法、乘法等。通过矩阵运算,可以实现对数据的变换、聚合和计算等操作。 2. 特征选择和降维:在机器学习中,我们通常面临着高维数据的问题,特征选择和降维可以帮助我们减少特征的数量,提高模型的效果和计算效率。矩阵分解方法如奇异值分解(SVD)和主成分分析(PCA)等,可以在保留数据的重要特征的同时,减少冗余信息。 3. 线性代数和优化问题:线性代数是矩阵论的重要分支,通过线性代数的工具,可以帮助我们解决机器学习中的优化问题。例如,通过求解矩阵方程可以得到回归模型的最优解,或者使用特征值和特征向量来进行数据降维。此外,矩阵的特征值和特征向量也可以用于聚类和分类等任务。 总而言之,矩阵论在机器学习中扮演了非常重要的角色,它可以帮助我们处理和理解数据,提高模型的性能和效率。因此,对于从事机器学习领域的人来说,掌握矩阵论是非常有必要的。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值