分享一则自己的毕业设计,基于人脸识别技术的门禁系统研究。系统硬件比较糙,可以集成化更高一点,基本控制是交由STM32处理,图像识别由K210处理。水平有限,恳请大家指正。
系统介绍
本系统设计以Kendryte K210为人脸图像识别的核心芯片,以STM32为系统逻辑控制芯片,同时加入语音模块、触摸屏和RFID模块。系统共四个功能模式,分别是人脸识别、口罩检测、特征学习、门禁通卡。人脸识别采用基于YOLO的人脸检测算法和特征提取算法,同时将模型部署至K210运行。系统可对人脸特征进行学习,实现了对人脸信息的实时录入,方便了门禁系统的管理。硬件方面系统还加入了RFID模块、语音播报模块、TFT触摸屏等。RFID模块主要实现了对用户ID卡识别,并将ID卡信息通过串口传送到STM32进行用户信息匹配。语音模块和触摸屏组成了系统人机交互部分,系统界面简洁操作简单,同时具备语音播报功能,智能化程度高。
硬件准备
STM32f103zet6、Maixduino、RFID模块、JZ-TRIG语音播报、触摸屏、LCD、摄像头、角度舵机、锂电池、稳压管(两个,一个给系统供电,一个单独给舵机供电)
软件准备
软件工具:MDK、Maixpy IDE、串口助手(调试用)
程序组成:人脸检测程序、人脸五点特征点提取、口罩检测程序、特征学习程序、RFID模块识别程序
部分代码
人脸识别、特征学习
代码参考Maixpy论坛一些前辈的经验,请大家多多支持Maixpy。
def face_recognize():
global flag_enter
global task_mask,task_ld,task_fe
global sum_3
global sum_4
global now_mode
img = sensor.snapshot()
code = kpu.run_yolo2(task_fd, img)
if code:
for i in code:
# Cut face and resize to 128x128
a = img.draw_rectangle(i.rect())
face_cut = img.cut(i.x(), i.y(), i.w(), i.h())
face_cut_128 = face_cut.resize(128, 128)
a = face_cut_128.pix_to_ai()
# a = img.draw_image(face_cut_128, (0,0))
# Landmark for face 5 points
fmap = kpu.forward(task_ld, face_cut_128)
plist = fmap[:]
le = (i.x() + int(plist[0] * i.w() - 10), i.y() + int(plist[1] * i.h()))
re = (i.x() + int(plist[2] * i.w()), i.y() + int(plist[3] * i.h()))
nose = (i.x() + int(plist[4] * i.w()), i.y() + int(plist[5] * i.h()))
lm = (i.x() + int(plist[6] * i.w()), i.y() + int(plist[7] * i.h()))
rm = (i.x() + int(plist[8] * i.w()), i.y() + int(plist[9] * i.h()))
a = img.draw_circle(le[0], le[1], 4)
a = img.draw_circle(re[0], re[1], 4)
a = img.draw_circle(nose[0], nose[1], 4)
a = img