基于K210的人脸识别门禁

该系统以Kendryte K210为核心,结合STM32,实现人脸识别、口罩检测、特征学习和门禁功能。通过YOLO算法进行人脸检测,RFID模块读取ID卡信息,同时具备语音播报和触摸屏交互。系统包括硬件准备如STM32、Maixduino、RFID模块等,以及软件部分如人脸检测、口罩检测和RFID识别程序。开发者分享了项目中的实用技巧和学习建议。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

毕业设计_基于K210的人脸识别门禁


分享一则自己的毕业设计,基于人脸识别技术的门禁系统研究。系统硬件比较糙,可以集成化更高一点,基本控制是交由STM32处理,图像识别由K210处理。水平有限,恳请大家指正。

系统介绍

本系统设计以Kendryte K210为人脸图像识别的核心芯片,以STM32为系统逻辑控制芯片,同时加入语音模块、触摸屏和RFID模块。系统共四个功能模式,分别是人脸识别、口罩检测、特征学习、门禁通卡。人脸识别采用基于YOLO的人脸检测算法和特征提取算法,同时将模型部署至K210运行。系统可对人脸特征进行学习,实现了对人脸信息的实时录入,方便了门禁系统的管理。硬件方面系统还加入了RFID模块、语音播报模块、TFT触摸屏等。RFID模块主要实现了对用户ID卡识别,并将ID卡信息通过串口传送到STM32进行用户信息匹配。语音模块和触摸屏组成了系统人机交互部分,系统界面简洁操作简单,同时具备语音播报功能,智能化程度高。
门禁系统

硬件准备

STM32f103zet6、Maixduino、RFID模块、JZ-TRIG语音播报、触摸屏、LCD、摄像头、角度舵机、锂电池、稳压管(两个,一个给系统供电,一个单独给舵机供电)
在这里插入图片描述

软件准备

软件工具:MDK、Maixpy IDE、串口助手(调试用)
程序组成:人脸检测程序、人脸五点特征点提取、口罩检测程序、特征学习程序、RFID模块识别程序
在这里插入图片描述

部分代码

人脸识别、特征学习
代码参考Maixpy论坛一些前辈的经验,请大家多多支持Maixpy。

def face_recognize():
    global flag_enter
    global task_mask,task_ld,task_fe
    global sum_3
    global sum_4
    global now_mode
    img = sensor.snapshot()
    code = kpu.run_yolo2(task_fd, img)
    if code:
        for i in code:
            # Cut face and resize to 128x128
            a = img.draw_rectangle(i.rect())
            face_cut = img.cut(i.x(), i.y(), i.w(), i.h())
            face_cut_128 = face_cut.resize(128, 128)
            a = face_cut_128.pix_to_ai()
            # a = img.draw_image(face_cut_128, (0,0))
            # Landmark for face 5 points
            fmap = kpu.forward(task_ld, face_cut_128)
            plist = fmap[:]
            le = (i.x() + int(plist[0] * i.w() - 10), i.y() + int(plist[1] * i.h()))
            re = (i.x() + int(plist[2] * i.w()), i.y() + int(plist[3] * i.h()))
            nose = (i.x() + int(plist[4] * i.w()), i.y() + int(plist[5] * i.h()))
            lm = (i.x() + int(plist[6] * i.w()), i.y() + int(plist[7] * i.h()))
            rm = (i.x() + int(plist[8] * i.w()), i.y() + int(plist[9] * i.h()))
            a = img.draw_circle(le[0], le[1], 4)
            a = img.draw_circle(re[0], re[1], 4)
            a = img.draw_circle(nose[0], nose[1], 4)
            a = img
<think>嗯,用户问的是K210人脸识别门禁系统,我需要先理解这个主题。K210是一个微控制器,常用于AIoT应用,对吧?首先,我应该介绍K210芯片的基本情况,比如它的特点,比如低功耗、集成KPU神经网络处理器这些。然后,再讲人脸识别门禁系统的组成部分,可能需要提到硬件部分,比如摄像头模块、存储模块、通信模块,还有电源管理这些。软件方面可能需要涉及人脸检测、特征提取、比对算法,还有数据库管理。 接下来,用户可能需要了解工作原理,比如摄像头捕捉图像,K210处理图像,提取特征,然后和数据库比对,决定是否开门。这里需要分步骤详细说明,比如预处理、检测、特征提取、比对、结果执行这些步骤。 然后,应用场景方面,可以举办公楼、小区、学校宿舍这些例子,说明其适用性。还要提到优点,比如成本低、功耗低、响应快,但也要提到局限性,比如受光线、角度影响,安全性的问题,毕竟K210算力有限,可能不适合高安全需求的地方。 用户可能想知道如何搭建这样的系统,所以需要分步骤指导,比如硬件选型、开发环境搭建、算法开发、调试优化、部署应用。这里可能需要提到具体的开发工具,比如MaixPy,或者使用TensorFlow Lite模型转换。 另外,需要注意用户的问题里有没有隐含的需求,比如他们可能想自己做一个这样的系统,所以需要给出实际可行的建议,比如选择合适摄像头,保证光照条件,定期更新数据库等。 还要检查是否遵循了系统指令,数学公式是否正确使用,比如如果有公式的话要用$$,但这里可能用不到太多数学内容,不过如果有提到算法中的数学概念,比如卷积运算,可能需要用行内公式。不过用户的问题可能不涉及太多数学,所以可能不需要。但还是要确保如果有的话,格式正确。 另外,结构要清晰,分点说明,比如分硬件组成、软件流程、应用场景、优缺点、开发步骤等部分。使用中文,避免专业术语过于复杂,让用户容易理解。 可能需要验证一些信息,比如K210的具体参数,KPU的处理能力,支持的人脸检测模型,比如是不是支持YOLO或者Mobilenet之类的,或者是否常用本地数据库存储特征。需要确保这些信息的准确性,如果有不确定的地方,可能需要模糊处理或者建议用户查阅官方文档。 最后,确保回答符合用户的需求,既全面又不过于技术化,让不同层次的用户都能理解。同时,提醒用户注意系统的局限性,比如安全性问题,可能需要结合其他验证方式,如密码或卡片,来提高安全性。</think>### K210人脸识别门禁系统介绍 #### 一、**系统核心硬件:K210芯片** K210是嘉楠科技推出的RISC-V架构AIoT芯片,专为边缘计算设计,具备以下特性: 1. **双核64位CPU**:主频400MHz,支持实时多任务处理。 2. **KPU神经网络处理器**:最高0.8TOPS算力,可运行轻量化模型(如YOLO、Mobilenet)。 3. **低功耗**:典型功耗1W,适合嵌入式场景。 4. **丰富外设**:支持摄像头、麦克风、LCD屏等模块接入。 #### 二、**系统组成** 1. **硬件部分** - **图像采集**:OV2640/OV5640等摄像头模块(分辨率最高支持1600×1200)。 - **存储模块**:MicroSD卡存储人脸特征数据库(容量通常需≥8GB)。 - **交互模块**:LED指示灯、蜂鸣器、电磁锁控制电路。 - **通信模块**:可选Wi-Fi/4G实现远程管理(如ESP8285模组)。 2. **软件流程** ``` 摄像头捕获图像 → 人脸检测 → 活体检测 → 特征提取 → 数据库比对 → 执行开锁 ``` - **人脸检测**:采用轻量级模型(如20KB级MobileNetV1),帧率可达30FPS。 - **活体检测**:通过眨眼检测/红外成像防止照片攻击。 - **特征比对**:使用128维特征向量,欧氏距离阈值一般设为0.6(经验值)。 #### 三、**关键技术指标** - **识别速度**:单次识别≤500ms - **准确率**:LFW数据集测试可达98.7% - **容量**:支持1000+人脸特征本地存储 - **工作温度**:-40℃~85℃ #### 四、**开发实践要点** 1. **模型优化** - 使用NNCase工具量化TensorFlow/Keras模型至8bit - 示例代码片段: ```python from Maix import GPIO fm.register(board_info.LED_W, fm.fpioa.GPIO0) led = GPIO(GPIO.GPIO0, GPIO.OUT) led.value(1) # 开锁信号 ``` 2. **功耗控制** - 动态频率调节:空闲时CPU降频至10MHz - 摄像头休眠模式:无活动时关闭图像采集 #### 五、**典型应用场景** - **办公门禁**:实现无接触考勤,支持黑名单报警 - **智能家居**:联动智能灯光/空调系统 - **校园管理**:学生宿舍出入权限分级控制 #### 六、**优化建议** 1. **光照补偿**:增加红外补光灯(波长850nm),提升暗光环境表现 2. **多模态验证**:结合RFID卡(13.56MHz)提升安全性 3. **远程升级**:通过OTA更新人脸数据库和算法模型 #### 七、**成本分析** - 硬件BOM成本:约¥120-200 - 功耗对比:传统方案(树莓派+USB摄像头)约5W,K210方案仅1.2W **注意**:需定期更新特征数据库,建议搭配云平台实现数据同步,并符合《信息安全技术个人信息安全规范》(GB/T 35273-2020)要求。
评论 97
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值