文章目录
一、数学期望
1.1 一维离散型随机变量的数学期望
这里大家在中学应该都学过:一维离散型随机变量的数学期望就是把每一个 x x x 和它对应的 P P P 相乘。 E [ X ] = ∑ i = 1 ∞ x i p i E[X] = \sum_{i=1}^{∞}x_ip_i E[X]=i=1∑∞xipi
1.1.1 几种常见离散型分布的数学期望
【1】二项分布的数学期望:若
X
X
X ~
B
(
n
,
p
)
B(n, p)
B(n,p) 那么,
E
X
=
n
p
EX = np
EX=np
【2】泊松分布的数学期望:若
X
X
X ~
P
o
i
s
(
λ
)
Pois(λ)
Pois(λ) 那么,
E
X
=
λ
,
D
X
=
λ
EX = λ,DX=λ
EX=λ,DX=λ
【3】几何分布的数学期望:
1.2 一维离散型随机变量函数的数学期望
如果有: Y = g ( X ) Y = g(X) Y=g(X) 那么 E [ g ( X ) ] E[g(X)] E[g(X)] 可以表示为: E [ g ( X ) ] = ∑ i = 1 ∞ g ( x i ) p i E[g(X)] = \sum_{i=1}^{∞}g(x_i)p_i E[g(X)]=i=1∑∞g(xi)pi
1.3 一维连续型随机变量的数学期望
这里我们直接上公式: E X = ∫ − ∞ + ∞ x f X ( x ) d x EX = \int_{-∞}^{+∞}xf_X(x)dx EX=∫−∞+∞xfX(x)dx
1.3.1 几种常见连续型分布的数学期望
【1】均匀分布:若
X
X
X ~
U
[
a
,
b
]
U[a, b]
U[a,b]那么,
E
X
=
a
+
b
2
EX = \frac{a+b}{2}
EX=2a+b
【2】正态分布:若
X
X
X ~
N
(
μ
,
σ
2
)
N(μ, σ^2)
N(μ,σ2),那么其数学期望为
E
X
=
μ
EX = μ
EX=μ
【3】指数分布:若
X
X
X ~
E
x
p
(
λ
)
Exp(λ)
Exp(λ),那么其数学期望为:
E
X
=
1
λ
EX = \frac{1}{λ}
EX=λ1
1.4 一维连续型随机变量函数的数学期望
1.5 数学期望的性质
- 常数 C 的数学期望也是 C: E C = C EC = C EC=C
- E ( X + C ) = E X + C E(X + C) = EX + C E(X+C)=EX+C 这里我们一样进行类比:假设全班同学在测量身高的时候都站在了一般高的砖头上,那么必然平均身高测出来就会高。
- E ( k X + b ) = k E X + b E(kX+b) = kEX + b E(kX+b)=kEX+b
- E ( X ± Y ) = E X ± E Y E(X ± Y) = EX ± EY E(X±Y)=EX±EY
- 当 X , Y X, Y X,Y 独立时, E ( X Y ) = E X ⋅ E Y E(XY) = EX \sdot EY E(XY)=EX⋅EY
1.6 二维随机变量的期望
这一部分将在本博客的第2.2.1 和 2.2.2 节详细介绍!
二、方差
我们以身高为例,期望反应的是全班同学的平均身高,那么方差反应的就是全班同学身高的起伏
下面给出方差的定义式:
D
X
=
E
(
X
−
E
X
)
2
DX = E(X - EX)^2
DX=E(X−EX)2,值得注意的是,我们这里是对
(
X
−
E
X
)
2
(X - EX)^2
(X−EX)2 求期望。
下面我们分别给出离散型和连续型随机变量的方差的定义:
【1】离散型:
D
X
=
∑
k
(
x
k
−
E
X
)
2
P
k
DX = \sum_k(x_k - EX)^2P_k
DX=∑k(xk−EX)2Pk
【2】连续型:
D
X
=
∫
−
∞
+
∞
(
x
−
E
X
)
2
f
X
(
x
)
d
x
DX = \int_{-∞}^{+∞}(x-EX)^2f_X(x)dx
DX=∫−∞+∞(x−EX)2fX(x)dx
但是,往往在解题的时候我们很少用到(当然有时候也会有用)方差的定义,我们常常用这样一个公式: D X = E X 2 − ( E X ) 2 DX = EX^2 - (EX)^2 DX=EX2−(EX)2
2.1 方差的性质
- 常数C 的方差恒为0: D C = 0 DC = 0 DC=0
- D ( X + C ) = D X D(X+C) = DX D(X+C)=DX 我们可以这样理解全班同学在测量身高时都站在一般高的砖头上了,那很明显大家都站高了一点对总的身高起伏是没有影响的。
- D ( C X ) = C 2 D X D(CX) = C^2DX D(CX)=C2DX 这里需要特别注意的是,在方差运算里面把常数 C 提出来需要变成 C 2 C^2 C2
- D ( k X + b ) = k 2 D X D(kX+b) = k^2DX D(kX+b)=k2DX(这个其实就是性质二和性质三的结合)
- 若 X , Y X, Y X,Y 独立,则 D ( X ± Y ) = D X + D Y D(X±Y) = DX + DY D(X±Y)=DX+DY
2.2 协方差
我们先来看看协方差的定义:
C
o
v
(
X
,
Y
)
=
E
[
(
X
−
E
X
)
(
Y
−
E
Y
)
]
Cov(X, Y) = E[(X-EX)(Y-EY)]
Cov(X,Y)=E[(X−EX)(Y−EY)]
我们一般很少用这个定义去计算协方差,而是用下面的公式:
C
o
v
(
X
,
Y
)
=
E
[
(
X
−
E
X
)
(
Y
−
E
Y
)
]
=
E
[
X
Y
−
X
E
Y
−
Y
E
X
+
E
X
E
Y
]
=
E
(
X
Y
)
−
E
X
E
Y
Cov(X,Y) = E[(X-EX)(Y-EY)] = E[XY - XEY - YEX +EXEY] =E(XY)-EXEY
Cov(X,Y)=E[(X−EX)(Y−EY)]=E[XY−XEY−YEX+EXEY]=E(XY)−EXEY
所以大家就要记得这个公式:
C
o
v
(
X
,
Y
)
=
E
(
X
Y
)
−
E
X
E
Y
Cov(X,Y) = E(XY) - EXEY
Cov(X,Y)=E(XY)−EXEY。同时说一句,大家看这个定义就知道,Cov 是针对二维随机变量的。
进一步讲,我们在刚刚讨论协方差的性质时,不是有一条:若
X
,
Y
X, Y
X,Y 独立,则
D
(
X
±
Y
)
=
D
X
+
D
Y
D(X±Y) = DX + DY
D(X±Y)=DX+DY 那么下面我们将把约束条件减小:
即对于任意X, Y ,均有:
D
(
X
±
Y
)
=
D
X
+
D
Y
±
2
C
o
v
(
X
,
Y
)
D(X±Y) = DX + DY ± 2Cov(X, Y)
D(X±Y)=DX+DY±2Cov(X,Y)
2.2.1 二维离散型随机变量的协方差计算
这里有固定的套路。我来解释解释:首先上公式: C o v ( X , Y ) = E ( X Y ) − E X E Y Cov(X,Y) = E(XY) - EXEY Cov(X,Y)=E(XY)−EXEY
- 计算出X, Y 的边缘分布 ,然后根据它们的边缘分布表算出 E X , E Y EX, EY EX,EY
- 对于 E ( X Y ) E(XY) E(XY) 的计算,其实是和求一维随机变量期望原理一样的,就是把每一个(X, Y)对 相乘,然后乘上它们对应的联合概率,然后把所有这些项加起来。
我们举一个例子,就一目了然了:
X Y X\raisebox{0.25em}{Y} XY | -1 | 0 | 1 |
---|---|---|---|
-1 | 1 8 \frac{1}{8} 81 | 1 8 \frac{1}{8} 81 | 1 8 \frac{1}{8} 81 |
0 | 1 8 \frac{1}{8} 81 | 0 | 1 8 \frac{1}{8} 81 |
1 | 1 8 \frac{1}{8} 81 | 1 8 \frac{1}{8} 81 | 1 8 \frac{1}{8} 81 |
下面计算 C o v ( X , Y ) Cov(X,Y) Cov(X,Y)
【第一步】先计算 X, Y 的边缘分布:
X | -1 | 0 | 1 |
---|---|---|---|
p | 3 8 \frac{3}{8} 83 | 1 4 \frac{1}{4} 41 | 3 8 \frac{3}{8} 83 |
Y | -1 | 0 | 1 |
---|---|---|---|
P | 3 8 \frac{3}{8} 83 | 1 4 \frac{1}{4} 41 | 3 8 \frac{3}{8} 83 |
根据两个边缘分布表,我们就可以分别计算出
E
X
,
E
Y
EX, EY
EX,EY:
EX = -1x
3
8
\frac{3}{8}
83 + 1x
3
8
\frac{3}{8}
83 = 0;EY = -1x
3
8
\frac{3}{8}
83 + 1x
3
8
\frac{3}{8}
83 = 0
【第二步】计算
E
(
X
Y
)
E(XY)
E(XY)
下面大家注意下面的式子:
E(XY) = (-1)x(-1)x
1
8
\frac{1}{8}
81 + (-1)x1x
1
8
\frac{1}{8}
81 + 1x(-1)x
1
8
\frac{1}{8}
81 + 1x1x
1
8
\frac{1}{8}
81 = 0
因此,最终我们得出: C o v ( X , Y ) = 0 Cov(X,Y) = 0 Cov(X,Y)=0
但是这里需要特别注意一件事情:协方差等于0能够推导出不相关,独立可推出不相关,但是不相关不能推出独立!
2.2.2 二维连续型随机变量的协方差计算
已知:
f
(
x
,
y
)
=
{
x
+
y
i
f
(
0
≤
x
≤
1
,
0
≤
y
≤
1
)
0
e
l
s
e
f(x,y) = \begin{cases} x+y\quad if(0≤x≤1, 0≤y≤1)\\ 0\quad else\\ \end{cases}
f(x,y)={x+yif(0≤x≤1,0≤y≤1)0else
计算
C
o
v
(
X
,
Y
)
Cov(X,Y)
Cov(X,Y)
【第一步】也是先计算 X,Y 的边缘分布:
f
X
(
x
)
=
∫
−
∞
+
∞
f
(
x
,
y
)
d
y
=
∫
0
1
(
x
+
y
)
d
y
=
x
+
1
2
\begin{aligned} f_X(x) &= \int_{-∞}^{+∞}f(x,y)dy = \int_{0}^1(x+y)dy = x+\frac{1}{2} \end{aligned}
fX(x)=∫−∞+∞f(x,y)dy=∫01(x+y)dy=x+21
同理也可以算出 Y 的边缘分布:
f
Y
(
y
)
=
y
+
1
2
f_Y(y) = y+\frac{1}{2}
fY(y)=y+21
因此,下面就可以开始计算
E
X
,
E
Y
EX,EY
EX,EY:
E
X
=
∫
−
∞
+
∞
x
f
X
(
x
)
d
x
=
∫
0
1
x
(
x
+
1
2
)
d
x
=
7
12
EX = \int_{-∞}^{+∞}xf_X(x)dx = \int_0^1x(x+\frac{1}{2})dx = \frac{7}{12}
EX=∫−∞+∞xfX(x)dx=∫01x(x+21)dx=127
同理算出 EX =
7
12
\frac{7}{12}
127
【第二步】计算 E(XY):
E
(
X
Y
)
=
∬
D
(
x
y
)
f
(
x
,
y
)
d
x
d
y
=
∫
0
1
∫
0
1
x
y
(
x
+
y
)
d
x
d
y
=
1
3
\begin{aligned} E(XY) &= \iint_D(xy)f(x,y)dxdy\\ &=\int_0^1\int_0^1xy(x+y)dxdy\\ &=\frac{1}{3} \end{aligned}
E(XY)=∬D(xy)f(x,y)dxdy=∫01∫01xy(x+y)dxdy=31
最后我们就得出:
C
o
v
(
X
,
Y
)
=
1
3
−
7
12
7
12
=
−
1
144
Cov(X,Y) = \frac{1}{3} - \frac{7}{12}\space \frac{7}{12} = -\frac{1}{144}
Cov(X,Y)=31−127 127=−1441
2.2.3 协方差的一些性质
- C o v ( X , Y ) = C o v ( Y , X ) Cov(X,Y) = Cov(Y, X) Cov(X,Y)=Cov(Y,X)
- C o v ( a X , b Y ) = a b C o v ( X , Y ) Cov(aX, bY) = abCov(X,Y) Cov(aX,bY)=abCov(X,Y)
- 若 X , Y X, Y X,Y 独立,则 C o v ( X , Y ) = 0 Cov(X, Y) = 0 Cov(X,Y)=0。注意:反过来是不成立的!!!!
- C o v ( C , X ) = 0 Cov(C, X)=0 Cov(C,X)=0,即X 和一个常数的协方差等于0
- C o v ( X 1 + X 2 , Y ) = C o v ( X 1 , Y ) + C o v ( X 2 , Y ) Cov(X_1+X_2, Y) = Cov(X_1, Y) + Cov(X_2, Y) Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)
在本次 B l o g Blog Blog 的最后,我们在讨论一个问题:
我们知道:协方差 C o v ( X , Y ) Cov(X, Y) Cov(X,Y) 反应的是两个变量之间的关系。但是 C o v ( X , Y ) Cov(X,Y) Cov(X,Y) 却会收到计量单位的影响:比如说我们像衡量父子间身高的关系,如果我们用“米”做单位,父亲身高1.7m,儿子 1.8m,那么二者相差只有 0.1,但是如果用 cm 做单位,那么相差就是10了。
这时,为了避免单位带来的影响,我们引入了 “标准化” :令:
X
∗
=
X
−
E
X
D
X
Y
∗
=
Y
−
E
Y
D
Y
X^* = \frac{X-EX}{\sqrt{DX}}\\ \space\\ Y^* = \frac{Y-EY}{\sqrt{DY}}
X∗=DXX−EX Y∗=DYY−EY
最终,
C
o
v
(
X
∗
,
Y
∗
)
Cov(X^*, Y^*)
Cov(X∗,Y∗) 就是一个不受单位影响的了,我们带入公式计算一下:
C
o
v
(
X
∗
,
Y
∗
)
=
E
(
X
∗
Y
∗
)
−
E
X
∗
E
Y
∗
=
E
(
X
−
E
X
D
X
⋅
Y
−
E
Y
D
Y
)
−
E
(
X
−
E
X
D
X
)
E
(
Y
−
E
Y
D
Y
)
\begin{aligned} Cov(X^*, Y^*) &= E(X^*Y^*) - EX^*EY^*\\ &=E(\frac{X-EX}{\sqrt{DX}}\sdot\frac{Y-EY}{\sqrt{DY}}) - E(\frac{X-EX}{\sqrt{DX}})E(\frac{Y-EY}{\sqrt{DY}})\\ \end{aligned}
Cov(X∗,Y∗)=E(X∗Y∗)−EX∗EY∗=E(DXX−EX⋅DYY−EY)−E(DXX−EX)E(DYY−EY)
我们先分析后面的:
E
(
X
−
E
X
D
X
)
=
1
D
X
E
(
X
−
E
X
)
=
1
D
X
(
E
X
−
E
X
)
=
0
E(\frac{X-EX}{\sqrt{DX}}) = \frac{1}{\sqrt{DX}}E(X-EX) = \frac{1}{\sqrt{DX}}(EX-EX) = 0
E(DXX−EX)=DX1E(X−EX)=DX1(EX−EX)=0
同理,
E
(
Y
−
E
Y
D
Y
)
E(\frac{Y-EY}{\sqrt{DY}})
E(DYY−EY) 也是等于0.因此,有:
C
o
v
(
X
∗
,
Y
∗
)
=
E
(
X
−
E
X
D
X
⋅
Y
−
E
Y
D
Y
)
=
C
o
v
(
X
,
Y
)
D
X
D
Y
Cov(X^*, Y^*) = E(\frac{X-EX}{\sqrt{DX}}\sdot\frac{Y-EY}{\sqrt{DY}}) = \frac{Cov(X, Y)}{\sqrt{DX}\sqrt{DY}}
Cov(X∗,Y∗)=E(DXX−EX⋅DYY−EY)=DXDYCov(X,Y)
我们定义
C
o
v
(
X
∗
,
Y
∗
)
Cov(X^*, Y^*)
Cov(X∗,Y∗) 为相关系数,这将在下一篇博客里面学习!